Skip to main content
Log in

A Recombinant Highly Thermostable β-Mannanase (ReTMan26) from Thermophilic Bacillus subtilis (TBS2) Expressed in Pichia pastoris and Its pH and Temperature Stability

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A gene encoding a highly thermostable β-mannanase from a thermophilic Bacillus subtilis (TBS2) was successfully expressed in Pichia pastoris. The maximum activity of the recombinant thermostable β-mannanase (ReTMan26) was 5435 U/mL, which was obtained by high-density, fed-batch cultivation after 168-h induction with methanol in a 50-L bioreactor. The protein yield reached 3.29 mg/mL, and the protein had a molecular weight of ~42 kDa. After fermentation, ReTMan26 was purified using a 10-kDa cut-off membrane and Sephadex G-75 column. The pH and temperature optima of purified ReTMan26 were pH 6.0 and 60 °C, respectively, and the enzyme was stable at pH 2.0–8.0 and was active at 20–100 °C. HPLC analysis of the products of locust bean gum hydrolysis showed that the mannan-oligosaccharide content was 62.5%. ReTMan26 retained 58.6% of its maximum activity after treatment at 100 °C for 10 min, which was higher than any other β-mannanase reported up to now, suggesting its potential for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chauhan, P. S., Puri, N., Sharma, P., & Gupta, N. (2012). Mannanases: microbial sources, production, properties and potential biotechnological applications. Applied Microbiology and Biotechnology, 93, 1817–1830.

    Article  CAS  Google Scholar 

  2. Akita, M., Takeda, N., & Hirasawa, K. (2004). Crystallization and preliminary X-ray study of alkaline mannanase from an alkaliphilic Bacillus isolate. Acta Crystallographica. Section D, Biological Crystallography, 60, 1490–1492.

    Article  Google Scholar 

  3. Dhawan, S., & Kaur, J. (2007). Microbial mannanases: an overview of production and applications. Critical Reviews in Biotechnology, 27, 197–216.

    Article  CAS  Google Scholar 

  4. Yu, S., Li, Z., Wang, Y., Chen, W., & Lin, F. (2015). High-level expression and characterization of a thermophilic β-mannanase from Aspergillus niger in Pichia pastoris. Biotechnology Letters, 37, 1853–1859.

    Article  CAS  Google Scholar 

  5. Hirst, E. L., Jones, J. K. N. (1948). The galactomannan of carob-seed gum (gum gatto). J. Chem. Soc, 1278–1282

  6. Katsuraya, K., Okuyamab, K., Hatanakab, K., Oshimab, R., Satoc, T., & Matsuzakic, K. (2003). Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy. Carbohydrate Polymers, 53, 183–189.

    Article  CAS  Google Scholar 

  7. Petkowicz, C. L. O., Reicher, F., Chanzy, H., Taravel, F. R., & Vuong, R. (2001). Linear mannan in the endosperm of Schizolobium amazonicum. Carbohyd Polym, 44, 107–112.

    Article  CAS  Google Scholar 

  8. McCleary, B. V. (1988). β-Mannanase. Method Enzymol, 160, 596–610.

    Article  CAS  Google Scholar 

  9. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  10. Yoon, K. H., Chung, S., & Lim, B. L. (2008). Characterization of the Bacillus subtilis WL-3 mannanase from a recombinant Escherichia coli. Journal of Microbiology, 46, 344–349.

    Article  CAS  Google Scholar 

  11. Puchart, V., Vršanská, M., Svoboda, P., Pohl, J., Ögel, Z. B., & Biely, P. (2004). Purification and characterization of two forms of endo-beta-1,4-mannanase from a thermotolerant fungus, Aspergillus fumigatus IMI 385708 (formerly Thermomyces lanuginosus IMI 158749). Biochimica et Biophysica Acta, 1674, 239–250.

    Article  CAS  Google Scholar 

  12. Zhang, Y. L., Ju, J. S., Peng, H., Gao, F., Zhou, C., Zeng, Y., Xue, Y. F., Li, Y., Henrissat, B., Gao, G. F., & Ma, Y. H. (2008). Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A. The Journal of Biological Chemistry, 283, 31551–31558.

    Article  CAS  Google Scholar 

  13. Zhao, W., Zheng, J., & Zhou, H. (2011). A thermotolerant and cold-active mannan endo-1,4-β-mannosidase from Aspergillus niger CBS513.88: constitutive overexpression and high density fermentation in Pichia pastoris. Bioresource Technology, 102, 7538–7547.

    Article  CAS  Google Scholar 

  14. Luo H., Wang Y., Wang H., Yang J., Yang Y., et al.(2009). A novel highly acidic beta-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Applied Microbiology and Biotechnology, 82,453–461.

  15. Kjeldsen, T., Pettersson, A. F., & Hach, M. (1999). Secretory expression and characterization of insulin in Pichia pastoris. Biotechnology and Applied Biochemistry, 29, 79–86.

    CAS  Google Scholar 

  16. Van Dijl, J. M., Braun, P. G., Robinson, C., Quax, W. J., Antelmann, H., et al. (2002). Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion. Journal of Biotechnology, 98, 243–254.

    Article  CAS  Google Scholar 

  17. Mendoza, N. S., Arai, M., Kawaguchi, T., Yoshida, T., & Joson, L. M. (1994). Purification and properties of mannanase from Bacillus subtilis. World Journal of Microbiology and Biotechnology, 5, 551–555.

    Article  Google Scholar 

  18. Lv, J., Chen, Y., Pei, H., Yang, W., Li, Z., Dong, B., & Cao, Y. (2013). Cloning, expression, and characterization of β-mannanase from Bacillus subtilis MAFIC-S11 in Pichia pastoris. Applied Biochemistry and Biotechnology, 169, 2326–2340.

    Article  CAS  Google Scholar 

  19. Li, J.-F., Zhao, S.-G., Tang, C.-D., Wang, J.-Q., & Wu, M.-C. (2012). Cloning and functional expression of an acidophilic β-mannanase gene (Anman5A) from Aspergillus niger LW-1 in Pichia pastoris. Journal of Agricultural and Food Chemistry, 60, 765–773.

    Article  CAS  Google Scholar 

  20. Wu, M., Tang, C., Li, J., Zhang, H., & Guo, J. (2011). Bimutation breeding of Aspergillus niger strain for enhancing β-mannanase production by solid-state fermentation. Carbohydrate Research, 346, 2149–2155.

    Article  CAS  Google Scholar 

  21. Fliedrova, B., Gerstorferova, D., Kren, V., & Weignerova, L. (2012). Production of Aspergillus niger β-mannosidase in Pichia pastoris. Protein Expression and Purification, 85, 159–164.

    Article  CAS  Google Scholar 

  22. Yu, S., Li, Z., Wang, Y., Chen, W., Lin, F., Tang, W., Chen, C., Liu, Y., Xue, Z., & Ma, L. (2015). High-level expression and characterization of a thermophilic β-mannanase from Aspergillus niger in Pichia pastoris. Biotechnology Letters, 37, 1853–1859.

    Article  CAS  Google Scholar 

  23. Yang, H., Shi, P., Lu, H., Wang, H., Luo, H., Huang, H., Yang, P., & Yao, B. (2015). A thermophilic β-mannanase from Neosartorya fischeri P1 with broad pH stability and significant hydrolysis ability of various mannan polymers. Food Chemistry, 173, 283–289.

    Article  CAS  Google Scholar 

  24. Ramachandran, P., Zhao, Z., Singh, R., Dhiman, S. S., et al. (2014). Characterization of a β-1,4-mannanase from a newly isolated strain of Pholiota adiposa and its application for biomass pretreatment. Bioprocess and Biosystems Engineering, 37, 1817–1824.

    Article  CAS  Google Scholar 

  25. Zhou, J., Zhang, R., Gao, Y., Li, J., Tang, X., et al. (2012). Novel low-temperature-active, salt-tolerant and proteases-resistant endo-1,4-β-mannanase from a new Sphingomonas strain. Journal of Bioscience and Bioengineering, 5, 568–574.

    Article  Google Scholar 

  26. Ghosh, A., Luís, A. S., Brás, J. L. A., Fontes, C. M. G. A., & Goyal, A. (2013). Thermostable recombinant β-(1→4)-mannanase from C. thermocellum: biochemical characterization and manno-oligosaccharides production. J. Agric. Food Chemistry, 61, 12333–12344.

    Article  CAS  Google Scholar 

  27. Moreira, L. R., & Filho, E. X. (2008). An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology, 79, 165–178.

    Article  CAS  Google Scholar 

  28. Malherbe, A. R., Rose, S. H., Viljoen-Bloom, M., & van Zyl, W. H. (2014). Expression and evaluation of enzymes required for the hydrolysis of galactomannan. Journal of Industrial Microbiology & Biotechnology, 41, 1201–1209.

    Article  CAS  Google Scholar 

  29. Choct, M., & Annison, G. (1992). The inhibition of nutrient digestion by wheat pentosans. The British Journal of Nutrition, 67, 123–132.

    Article  CAS  Google Scholar 

  30. Jackson, M. E., Fodge, D. W., & Hsiao, H. Y. (1999). Effects of β-mannanase in corn-soybean meal diets on laying hen performance. Poultry Science, 78, 1737–1741.

    Article  CAS  Google Scholar 

  31. Agrawal, P., Verma, D., & Daniell, H. (2011). Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis. PloS One, 6, 1–10.

    Google Scholar 

  32. Stetter, K. O. (1996). Hyperthermophiles in the history of life. Ciba Foundation Symposium, 202, 1–18.

    CAS  Google Scholar 

  33. Tang, X., Wang, Z., & Zhuge, J. (2001). High thermostable extremozymes for industrial application (in Chinese). Food and Fermentation Industries, 27, 65–70.

    CAS  Google Scholar 

  34. Maijala, P., Kango, N., Szijarto, N., & Viikari, L. (2012). Characterization of hemicellulases from thermophilic fungi. Antonie Van Leeuwenhoek, 101, 905–917.

    Article  CAS  Google Scholar 

  35. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  36. Chen, X. L., Cao, Y. H., Ding, Y. H., Lu, W. Q., & Li, D. F. (2007). Cloning, functional expression and characterization of Aspergillus sulphureus β-mannanase in Pichia pastoris. Journal of Biotechnology, 128, 452–461.

    Article  CAS  Google Scholar 

  37. Summpunn, P., Chaijan, S., Isarangkul, D., Wiyakrutta, S., & Meevootisom, V. (2011). Characterization, gene cloning, and heterologous expression of β-mannanase from a thermophilic Bacillus subtilis. Journal of Microbiology, 49, 86–93.

    Article  CAS  Google Scholar 

  38. Macauley, S., Fazenda, M. L., McNeil, B., & Harvey, L. M. (2005). Heterologous protein production using the Pichia pastoris as expression system. Yeast, 22, 249–270.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the open project of Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University (grant no. KLIB-KF201510), and the Fundamental Research Funds for the Central Universities (grant no. JUSRP111A24), the 111 Project (No. 111-2-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Miao, J., Li, G. et al. A Recombinant Highly Thermostable β-Mannanase (ReTMan26) from Thermophilic Bacillus subtilis (TBS2) Expressed in Pichia pastoris and Its pH and Temperature Stability. Appl Biochem Biotechnol 182, 1259–1275 (2017). https://doi.org/10.1007/s12010-017-2397-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2397-4

Keywords

Navigation