Skip to main content

Advertisement

Log in

Use of Capillary Electrophoresis to Study the Binding Interaction of Aptamers with Wild-Type, K103N, and Double Mutant (K103N/Y181C) HIV-1 RT

Studying the Binding Interaction of Wild-Type, K103N, and Double Mutant (K103N/Y181C) HIV-1 RT with Aptamers by Performing the Capillary Electrophoresis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A number of nucleic acid aptamers with high affinities to human immunodeficiency virus reverse transcriptase (HIV-1 RT) are currently known. They can potentially be developed as broad-spectrum antiviral drugs, but there is little known about their binding interaction with mutant HIV-1 RT. Therefore, we utilized non-equilibrium capillary electrophoresis of equilibrium mixture (NECEEM) to study the interaction of three HIV-1 RTs (wild type, K103N, and double mutant (K103N/Y181C)) with RT1t49 and RT12 aptamers. This approach was used to study and evaluate the K d values of these molecules. The results showed that the K d values of the tested aptamers were lower than that of the DNA substrate. The results also pointed out that RT1t49 could bind with all HIV-1 RTs and compete with the DNA substrate at the active site. Moreover, we studied the binding stoichiometry of HIV-1 RT using aptamers as probes. The findings showed evidence of two binding stoichiometries with HIV-1 RT and the RT12 aptamer but only one binding stoichiometry for RT1t49. In addition, RT1t49 could bind specifically with the wild-type, K103N, and double mutants in Escherichia coli lysate. This result also indicated that the aptamer could detect HIV-1 RT in the presence of E. coli lysate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jacobo-Molina, A., Ding, J., Nanni, R. G., Clark, A. D., Lu, X., Tantillo, C., Williams, R. L., Kamer, G., Ferris, A. L., & Clark, P. (1993). Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proceedings of the National Academy of Sciences of the United States of America, 90, 6320–6324.

    Article  CAS  Google Scholar 

  2. Jensen, K. B., Atkinson, B. L., Willis, M. C., Koch, T. H., & Gold, L. (1995). Using in vitro selection to direct the covalent attachment of human immunodeficiency virus type 1 Rev protein to high-affinity RNA ligands. Proceedings of the National Academy of Sciences of the United States of America, 92, 12220–12224.

    Article  CAS  Google Scholar 

  3. Menendez-Arias, L. (2010). Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Research, 85, 210–231.

    Article  CAS  Google Scholar 

  4. Hsiou, Y., Ding, J., Das, K., Clark Jr., A. D., Boyer, P. L., Lewi, P., Janssen, P. A. J., Kleim, J.-P., Rösner, M., Hughes, S. H., & Arnold, E. (2001). The Lys103Asn mutation of HIV-1 RT: a novel mechanism of drug resistance1. Journal of Molecular Biology, 309, 437–445.

    Article  CAS  Google Scholar 

  5. Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346, 818–822.

    Article  CAS  Google Scholar 

  6. Berezovski, M. V., Musheev, M. U., Drabovich, A. P., Jitkova, J. V., & Krylov, S. N. (2006). Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides. Nature Protocols, 1, 1359–1369.

    Article  CAS  Google Scholar 

  7. Berezovski, M., Musheev, M., Drabovich, A., & Krylov, S. N. (2006). Non-SELEX selection of aptamers. Journal of the American Chemical Society, 128, 1410–1411.

    Article  CAS  Google Scholar 

  8. Duan, Y., Gao, Z., Wang, L., Wang, H., Zhang, H. and Li, H. (2016) Selection and identification of chloramphenicol-specific DNA aptamers by Mag-SELEX. Applied Biochemistry and Biotechnology, 1–13.

  9. Park, H.-C., Baig, I. A., Lee, S.-C., Moon, J.-Y., & Yoon, M.-Y. (2014). Development of ssDNA aptamers for the sensitive detection of salmonella typhimurium and salmonella enteritidis. Applied Biochemistry and Biotechnology, 174, 793–802.

    Article  CAS  Google Scholar 

  10. Mozioglu, E., Gokmen, O., Tamerler, C., Kocagoz, Z. T., & Akgoz, M. (2016). Selection of nucleic acid aptamers specific for Mycobacterium tuberculosis. Applied Biochemistry and Biotechnology, 178, 849–864.

    Article  CAS  Google Scholar 

  11. Berens, C., Thain, A., & Schroeder, R. (2001). A tetracycline-binding RNA aptamer. Bioorganic & Medicinal Chemistry, 9, 2549–2556.

    Article  CAS  Google Scholar 

  12. O’Brien, K. B., Esguerra, M., Miller, R. F., & Bowser, M. T. (2004). Monitoring neurotransmitter release from isolated retinas using online microdialysis-capillary electrophoresis. Analytical Chemistry, 76, 5069–5074.

    Article  Google Scholar 

  13. Wang, Z., Wilkop, T., Xu, D., Dong, Y., Ma, G., & Cheng, Q. (2007). Surface plasmon resonance imaging for affinity analysis of aptamer–protein interactions with PDMS microfluidic chips. Analytical and Bioanalytical Chemistry, 389, 819–825.

    Article  CAS  Google Scholar 

  14. Golub, E., Pelossof, G., Freeman, R., Zhang, H., & Willner, I. (2009). Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Analytical Chemistry, 81, 9291–9298.

    Article  CAS  Google Scholar 

  15. Nguyen, T.-H., Steinbock, L. J., Butt, H.-J., Helm, M., & Berger, R. (2011). Measuring single small molecule binding via rupture forces of a split aptamer. Journal of the American Chemical Society, 133, 2025–2027.

    Article  CAS  Google Scholar 

  16. Yangyuoru, P. M., Dhakal, S., Yu, Z., Koirala, D., Mwongela, S. M., & Mao, H. (2012). Single-molecule measurements of the binding between small molecules and DNA aptamers. Analytical Chemistry, 84, 5298–5303.

    Article  CAS  Google Scholar 

  17. Mosing, R. K., Mendonsa, S. D., & Bowser, M. T. (2005). Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Analytical Chemistry, 77, 6107–6112.

    Article  CAS  Google Scholar 

  18. Berezovski, M., Nutiu, R., Li, Y., & Krylov, S. N. (2003). Affinity analysis of a protein-aptamer complex using nonequilibrium capillary electrophoresis of equilibrium mixtures. Analytical Chemistry, 75, 1382–1386.

    Article  CAS  Google Scholar 

  19. Nguyen, V. T., Kwon, Y. S., Kim, J. H., & Gu, M. B. (2014). Multiple GO-SELEX for efficient screening of flexible aptamers. Chemical Communications (Cambridge, England), 50, 10513–10516.

    Article  CAS  Google Scholar 

  20. Berezovski, M., & Krylov, S. N. (2004). Using nonequilibrium capillary electrophoresis of equilibrium mixtures for the determination of temperature in capillary electrophoresis. Analytical Chemistry, 76, 7114–7117.

    Article  CAS  Google Scholar 

  21. Tuerk, C., MacDougal, S., & Gold, L. (1992). RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proceedings of the National Academy of Sciences of the United States of America, 89, 6988–6992.

    Article  CAS  Google Scholar 

  22. Burke, D. H., Scates, L., Andrews, K., & Gold, L. (1996). Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase. Journal of Molecular Biology, 264, 650–666.

    Article  CAS  Google Scholar 

  23. Schneider, D. J., Feigon, J., Hostomsky, Z., & Gold, L. (1995). High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus. Biochemistry, 34, 9599–9610.

    Article  CAS  Google Scholar 

  24. Lai, Y. T., & DeStefano, J. J. (2012). DNA aptamers to human immunodeficiency virus reverse transcriptase selected by a primer-free SELEX method: characterization and comparison with other aptamers. Nucleic Acid Therapeutics, 22, 162–176.

    CAS  Google Scholar 

  25. Ditzler, M. A., Bose, D., Shkriabai, N., Marchand, B., Sarafianos, S. G., Kvaratskhelia, M., & Burke, D. H. (2011). Broad-spectrum aptamer inhibitors of HIV reverse transcriptase closely mimic natural substrates. Nucleic Acids Research, 39, 8237–8247.

    Article  CAS  Google Scholar 

  26. Joshi, P. J., North, T. W., & Prasad, V. R. (2005). Aptamers directed to HIV-1 reverse transcriptase display greater efficacy over small hairpin RNAs targeted to viral RNA in blocking HIV-1 replication. Molecular Therapy, 11, 677–686.

    Article  CAS  Google Scholar 

  27. Joshi, P., & Prasad, V. R. (2002). Potent inhibition of human immunodeficiency virus type 1 replication by template analog reverse transcriptase inhibitors derived by SELEX (systematic evolution of ligands by exponential enrichment). Journal of Virology, 76, 6545–6557.

    Article  CAS  Google Scholar 

  28. Chaloin, L., Lehmann, M. J., Sczakiel, G., & Restle, T. (2002). Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Research, 30, 4001–4008.

    Article  CAS  Google Scholar 

  29. Aeksiri, N., Songtawee, N., Gleeson, M. P., Hannongbua, S., & Choowongkomon, K. (2014). Insight into HIV-1 reverse transcriptase–aptamer interaction from molecular dynamics simulations. Journal of Molecular Modeling, 20, 1–10.

    Article  CAS  Google Scholar 

  30. Fu, H., Guthrie, J. W., & Le, X. C. (2006). Study of binding stoichiometries of the human immunodeficiency virus type 1 reverse transcriptase by capillary electrophoresis and laser-induced fluorescence polarization using aptamers as probes. Electrophoresis, 27, 433–441.

    Article  CAS  Google Scholar 

  31. Fisher, T. S., Joshi, P., & Prasad, V. R. (2005). HIV-1 reverse transcriptase mutations that confer decreased in vitro susceptibility to anti-RT DNA aptamer RT1t49 confer cross resistance to other anti-RT aptamers but not to standard RT inhibitors. AIDS Research and Therapy, 2, 1–10.

    Article  Google Scholar 

  32. Fisher, T. S., Joshi, P. and Prasad, V. R. (2002) Mutations that confer resistance to template-analog inhibitors of human immunodeficiency virus (HIV) type 1 reverse transcriptase lead to severe defects in HIV replication. J Virol, 76.

  33. Lansdon, E. B., Samuel, D., Lagpacan, L., Brendza, K. M., White, K. L., Hung, M., Liu, X., Boojamra, C. G., Mackman, R. L., Cihlar, T., Ray, A. S., McGrath, M. E., & Swaminathan, S. (2010). Visualizing the molecular interactions of a nucleotide analog, GS-9148, with HIV-1 reverse transcriptase–DNA complex. Journal of Molecular Biology, 397, 967–978.

    Article  CAS  Google Scholar 

  34. Kissel, J. D., Held, D. M., Hardy, R. W., & Burke, D. H. (2007). Single-stranded DNA aptamer RT1t49 inhibits RT polymerase and RNase H functions of HIV type 1, HIV type 2, and SIVCPZ RTs. AIDS Research and Human Retroviruses, 23, 699–708.

    Article  CAS  Google Scholar 

  35. Wang, H., Lu, M., & Le, X. C. (2005). DNA-driven focusing for protein-DNA binding assays using capillary electrophoresis. Analytical Chemistry, 77, 4985–4990.

    Article  CAS  Google Scholar 

  36. Silprasit, K., Thammaporn, R., Hannongbua, S., & Choowongkomon, K. (2008). Cloning, expression, purification, determining activity of recombinant HIV-1 reverse transcriptase. Kasetsart Journal (Natural Science), 42, 231–239.

    Google Scholar 

  37. Berezovski, M., & Krylov, S. N. (2002). Nonequilibrium capillary electrophoresis of equilibrium mixtures—a single experiment reveals equilibrium and kinetic parameters of protein-DNA interactions. Journal of the American Chemical Society, 124, 13674–13675.

    Article  CAS  Google Scholar 

  38. Zhang, Y.-W., Yan, H.-Y., Fu, P., Jiang, F., Zhang, Y., Wu, W.-X., & Li, J.-X. (2013). Modified capillary electrophoresis based measurement of the binding between DNA aptamers and an unknown concentration target. Analytical and Bioanalytical Chemistry, 405, 5549–5555.

    Article  CAS  Google Scholar 

  39. Lakhin, A. V., Tarantul, V. Z., & Gening, L. V. (2013). Aptamers: problems, solutions and prospects. Acta Naturae, 5, 34–43.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiattawee Choowongkomon.

Electronic supplementary material

Supplement 1

(DOCX 80 kb)

Supplement 2

(DOCX 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aeksiri, N., Warakulwit, C., Hannongbua, S. et al. Use of Capillary Electrophoresis to Study the Binding Interaction of Aptamers with Wild-Type, K103N, and Double Mutant (K103N/Y181C) HIV-1 RT. Appl Biochem Biotechnol 182, 546–558 (2017). https://doi.org/10.1007/s12010-016-2343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2343-x

Keywords

Navigation