Skip to main content
Log in

Effect of Linker Length and Flexibility on the Clostridium thermocellum Esterase Displayed on Bacillus subtilis Spores

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In fusion protein design strategies, the flexibility and length of linkers are important parameters affecting the bioactivity of multifunctional proteins. A series of fusion proteins with different linkers were constructed. The effect of temperature, pH, and organic solvents was investigated on the enzymatic activity. Fusion proteins with P1(PTPTPT) and P2((PTPTPT)2) linkers remained highly active with wide temperature range. At pH 9.6, the relative activity of fusion proteins with (PTPTPT)2 and S2(EGKSSGSGSESKST) linkers was 70 and 62 % (1.75 and 1.5 times of that of non-linker ones). Fusion proteins with S3((GGGGS)4) linker retained 55 % activity after 5 h of incubation at 80 °C (1.2-fold of that of non-linker fusion proteins and 1.9-fold of GGGGS-linker fusion proteins). Finally, the relative activity of fusion proteins having different linkers was increased with 20 % dimethyl sulfoxide (DMSO) and methanol; relative activity of fusion proteins with EGKSSGSGSESKST linkers was enhanced 1.5- and 2.2-fold, respectively. These results suggest that longer flexible linker can enhance the activity and stability of displayed esterase than shorter flexible linker. Optimizing peptide linkers with length, flexibility, and amino acid composition could improve the thermostability and activity of the displayed enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Potot, S., Serra, C. R., Henriques, A. O., et al. (2010). Display of recombinant proteins on Bacillus subtilis spores, using a coat-associated enzyme as the carrier [J]. Applied and Environmental Microbiology, 76(17), 5926–5933.

    Article  CAS  Google Scholar 

  2. Ricca, R. I. E. (2014). Spore surface display [J]. Microbiology Spectrum, 2(5), 1–15.

    Google Scholar 

  3. Hinc, K., Ghandili, S., Karbalaee, G., et al. (2010). Efficient binding of nickel ions to recombinant Bacillus subtilis spores [J]. Research in Microbiology, 161(9), 757–764.

    Article  CAS  Google Scholar 

  4. Mauriello, E. M., le H, D., Isticato, R., et al. (2004). Display of heterologous antigens on the Bacillus Subtilis spore coat using CotC as a fusion partner [J]. Vaccine, 22(9–10), 1177–1187.

    Article  CAS  Google Scholar 

  5. Hwang, B. Y., Kim, B. G., & Kim, J. H. (2011). Bacterial surface display of a co-factor containing enzyme, ω-transaminase from Vibrio fluvialis using the Bacillus subtilis spore display system [J]. Bioscience Biotechnology & Biochemistry, 75(9), 1862–1865.

    Article  CAS  Google Scholar 

  6. Potot, S., Serra, C. R., Henriques, A. O., et al. (2010). Display of recombinant proteins on Bacillus subtilis spores, using a coat-associated enzyme as the carrier [J]. Applied & Environmental Microbiology, 76(17), 5926–5933.

    Article  CAS  Google Scholar 

  7. Han, M., & Enomoto, K. (2011). Surface display of recombinant protein on the cell surface of Bacillus subtilis by the CotB anchor protein [J]. World Journal of Microbiology & Biotechnology, 27(3), 719–726.

    Article  CAS  Google Scholar 

  8. Driks S L a A. Functional analysis of the Bacillus subtilis [J]. Molecular Microbiology, 2001, 42(4): 1107–1120.

  9. Isticato, R., Cangiano, G., Tran, H. T., et al. (2001). Surface display of recombinant proteins on Bacillus subtilis spores [J]. Journal of Bacteriology, 183(21), 6294–6301.

    Article  CAS  Google Scholar 

  10. Haki, G., & Rakshit, S. (2003). Developments in industrially important thermostable enzymes: a review [J]. Bioresource Technology, 89(1), 17–34.

    Article  CAS  Google Scholar 

  11. Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: property, design and functionality [J]. Advanced Drug Delivery Reviews, 65(10), 1357–1369.

    Article  CAS  Google Scholar 

  12. Elleuche, S. (2015). Bringing functions together with fusion enzymes-from nature's inventions to biotechnological applications [J]. Applied Microbiology & Biotechnology, 99(4), 1545–1556.

    Article  CAS  Google Scholar 

  13. Zhao, H. L., Yao, X. Q., Xue, C., et al. (2008). Increasing the homogeneity, stability and activity of human serum albumin and interferon-α2b fusion protein by linker engineering [J]. Protein Expression and Purification, 61(1), 73–77.

    Article  CAS  Google Scholar 

  14. Huang, Z., Zhang, C., Chen, S., et al. (2013). Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility [J]. Microbial Cell Factories, 12(1), 1.

    Article  Google Scholar 

  15. Amet, N., Lee, H.-F., & Shen, W.-C. (2009). Insertion of the designed helical linker led to increased expression of tf-based fusion proteins [J]. Pharmaceutical Research, 26(3), 523–528.

    Article  CAS  Google Scholar 

  16. Bai, Y., & Shen, W.-C. (2006). Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization [J]. Pharmaceutical Research, 23(9), 2116–2121.

    Article  CAS  Google Scholar 

  17. Lu, P., Feng, M.-G., Li, W.-F., et al. (2006). Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli [J]. FEMS Microbiology Letters, 261(2), 224–230.

    Article  CAS  Google Scholar 

  18. Wriggers, W., Chakravarty, S., & Jennings, P. A. (2005). Control of protein functional dynamics by peptide linkers [J]. Peptide Science, 80(6), 736–746.

    Article  CAS  Google Scholar 

  19. Wang, W. W.-S., Das, D., McQuarrie, S. A., et al. (2007). Design of a bifunctional fusion protein for ovarian cancer drug delivery: single-chain anti-CA125 core-streptavidin fusion protein [J]. European Journal of Pharmaceutics and Biopharmaceutics, 65(3), 398–405.

    Article  CAS  Google Scholar 

  20. Klement, M., Liu, C., Loo, B. L. W., et al. (2015). Effect of linker flexibility and length on the functionality of a cytotoxic engineered antibody fragment [J]. Journal of Biotechnology, 199, 90–97.

    Article  CAS  Google Scholar 

  21. Shan, D., Press, O. W., Tsu, T. T., et al. (1999). Characterization of scFv-Ig constructs generated from the anti-CD20 mAb 1F5 using linker peptides of varying lengths [J]. The Journal of Immunology, 162(11), 6589–6595.

    CAS  Google Scholar 

  22. Liu, H., Qiao, H., Krajcikova, D., et al. (2016). Physical interaction and assembly of Bacillus subtilis spore coat proteins CotE and CotZ studied by atomic force microscopy [J]. Journal of Structural Biology, 195(2), 245–251.

    Article  CAS  Google Scholar 

  23. Ramamurthi, K. S., Clapham, K. R., & Losick, R. (2006). Peptide anchoring spore coat assembly to the outer forespore membrane in Bacillus subtilis [J]. Molecular Microbiology, 62(6), 1547–1557.

    Article  CAS  Google Scholar 

  24. Chang, H.-C., Kaiser, C. M., Hartl, F. U., et al. (2005). De novo folding of GFP fusion proteins: high efficiency in eukaryotes but not in bacteria [J]. Journal of Molecular Biology, 353(2), 397–409.

    Article  CAS  Google Scholar 

  25. Huang, Z., Li, G., Zhang, C., et al. (2016). A study on the effects of linker flexibility on acid phosphatase PhoC-GFP fusion protein using a novel linker library [J]. Enzyme and Microbial Technology, 83, 1–6.

    Article  Google Scholar 

  26. Turner, D. J., Ritter, M. A., & George, A. J. (1997). Importance of the linker in expression of single-chain Fv antibody fragments: optimisation of peptide sequence using phage display technology [J]. Journal of Immunological Methods, 205(1), 43–54.

    Article  CAS  Google Scholar 

  27. Sigwalt, D., Moncelet, D., Falcinelli, S., et al. (2016). Acyclic Cucurbit [n] uril-type molecular containers: influence of linker length on their function as solubilizing agents [J]. ChemMedChem.

  28. Carstens, BB., Swedberg, J., Berecki, G., et al. (2016). Effects of linker sequence modifications on the structure, stability and biological activity of a cyclic α-conotoxin [J]. Peptide Science.

  29. Kong, Y., Tong, Y., Gao, M., et al. (2016). Linker engineering for fusion protein construction: improvement and characterization of a GLP-1 fusion protein [J]. Enzyme and Microbial Technology, 82, 105–109.

    Article  CAS  Google Scholar 

  30. Chen, H., Zhang, T., Jia, J., et al. (2015). Expression and display of a novel thermostable esterase from Clostridium thermocellum on the surface of Bacillus subtilis using the CotB anchor protein [J]. Journal of Industrial Microbiology, 42(11), 1–10.

    Google Scholar 

  31. Nicholson, W., & Setlow, P. (1990). Sporulation, germination and outgrowth [J]. Molecular biological methods for Bacillus, 391-450.

  32. Lam, K., Chow, K., & Wong, W. (1998). Construction of an efficient Bacillus subtilis system for extracellular production of heterologous proteins [J]. Journal of Biotechnology, 63(3), 167–177.

    Article  CAS  Google Scholar 

  33. Ming-Ming, Y., Wei-Wei, Z., Xi-Feng, Z., et al. (2006). Construction and characterization of a novel maltose inducible expression vector in Bacillus subtilis [J]. Biotechnology Letters, 28(21), 1713–1718.

    Article  Google Scholar 

  34. Georgiou, G., Stathopoulos, C., Daugherty, P. S., et al. (1997). Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines [J]. Nature Biotechnology, 15(1), 29–34.

    Article  CAS  Google Scholar 

  35. Schmidt, S. R. (2009). Fusion-proteins as biopharmaceuticals—applications and challenges [J]. Current Opinion in Drug Discovery & Development, 12(2), 284–295.

    CAS  Google Scholar 

  36. George, R. A., & Heringa, J. (2002). An analysis of protein domain linkers: their classification and role in protein folding [J]. Protein Engineering, 15(11), 871–879.

    Article  CAS  Google Scholar 

  37. Ramachandran, G. T., & Sasisekharan, V. (1968). Conformation of polypeptides and proteins [J]. Advances in Protein Chemistry, 23, 283–437.

    Article  CAS  Google Scholar 

  38. Robinson, C. R., & Sauer, R. T. (1998). Optimizing the stability of single-chain proteins by linker length and composition mutagenesis [J]. Proceedings of the National Academy of Sciences, 95(11), 5929–5934.

    Article  CAS  Google Scholar 

  39. Lu, P., & Feng, M.-G. (2008). Bifunctional enhancement of a β-glucanase-xylanase fusion enzyme by optimization of peptide linkers [J]. Applied Microbiology and Biotechnology, 79(4), 579–587.

    Article  CAS  Google Scholar 

  40. BHANDARI, D. G., LEVINE, B. A., TRAYER, I. P., et al. (1986). 1H-NMR study of mobility and conformational constraints within the proline-rich N-terminal of the LC1 alkali light chain of skeletal myosin [J]. European Journal of Biochemistry, 160(2), 349–356.

    Article  CAS  Google Scholar 

  41. Liu, C., Chin, J. X., & Lee, D. Y. (2015). SynLinker: an integrated system for designing linkers and synthetic fusion proteins [J]. Bioinformatics, 31(22), 3700–3702.

    Article  CAS  Google Scholar 

  42. Crasto, C. J., & Feng, J.-a. (2000). LINKER: a program to generate linker sequences for fusion proteins [J]. Protein Engineering, 13(5), 309–312.

    Article  CAS  Google Scholar 

  43. Xue, F., Gu, Z., & Feng, J.-a. (2004). LINKER: a web server to generate peptide sequences with extended conformation [J]. Nucleic Acids Research, 32(suppl 2), W562–W565.

    Article  CAS  Google Scholar 

  44. Hinc, K., Iwanicki, A., & Obuchowski, M. (2013). New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis [J]. Microbial Cell Factories, 12(1), 22.

    Article  CAS  Google Scholar 

  45. Williamson, M. P. (1994). The structure and function of proline-rich regions in proteins [J]. Biochemical Journal, 297(Pt 2), 249.

    Article  CAS  Google Scholar 

  46. Stepankova, V., Bidmanova, S., Koudelakova, T., et al. (2013). Strategies for stabilization of enzymes in organic solvents [J]. ACS Catalysis, 3(12), 2823–2836.

    Article  CAS  Google Scholar 

  47. Klibanov, A. M. (2001). Improving enzymes by using them in organic solvents [J]. Nature, 409, 241–246.

    Article  CAS  Google Scholar 

  48. Bird, R. E., Hardman, K. D., Jacobson, J. W., et al. (1988). Single-chain antigen-binding proteins [J]. Science, 242(4877), 423–426.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Open Funding Project of the State Key Laboratory of Bioreactor Engineering and the National Key Basic Research Program of China (973 Program, No. 2011CBA00800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huayou Chen.

Additional information

Huayou Chen, Bangguo Wu, and Tianxi Zhang contributed equally to this work and should be considered co-first authors

Electronic Supplementary Material

Fig S1

(DOCX 57 kb)

Table S1

(DOCX 13 kb)

Table S2

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wu, B., Zhang, T. et al. Effect of Linker Length and Flexibility on the Clostridium thermocellum Esterase Displayed on Bacillus subtilis Spores. Appl Biochem Biotechnol 182, 168–180 (2017). https://doi.org/10.1007/s12010-016-2318-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2318-y

Keywords

Navigation