Skip to main content
Log in

Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H3PO4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H3PO4 proportion, and time. H3PO4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H3PO4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H3PO4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H3PO4 proportion of 70.2 % (H2O2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ma, H., Liu, W. W., Xing, C., Wu, Y. J., & Yu, Z. L. (2009). Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technology, 100(3), 1279–1284.

    Article  CAS  Google Scholar 

  2. Saha, B. C., Nichols, N. N., Qureshi, N., et al. (2015). Pilot scale conversion of wheat straw to ethanol via simultaneous saccharification and fermentation. Bioresource Technology, 175(175), 17–22.

    Article  CAS  Google Scholar 

  3. Zhang, Y. F., Min, B. K., Huang, L. P., et al. (2009). Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Applied and Environmental Microbiology, 75(11), 3389–3395.

    Article  CAS  Google Scholar 

  4. Zakaria, M. R., Hirata, S., & Hassan, M. A. (2015). Hydrothermal pretreatment enhanced enzymatic hydrolysis and glucose production from oil palm biomass. Bioresource Technology, 176, 142–148.

    Article  CAS  Google Scholar 

  5. Alvira, P., Tomás-Pejó, E., Ballesteros, M., et al. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101(13), 4851–4861.

    Article  CAS  Google Scholar 

  6. Doherty, T. V., Mora-Pale, M., Foley, S. E., et al. (2010). Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chemistry, 12(11), 1967–1975.

    Article  CAS  Google Scholar 

  7. Mani, S., Tabil, L. G., & Sokhansanj, S. (2004). Grinding performance and physical properties of wheat and barley straws, corn Stover and switchgrass. Biomass and Bioenergy, 27(4), 339–352.

    Article  Google Scholar 

  8. Petersen, M. Ø., Larsen, J., & Thomsen, M. H. (2009). Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass and Bioenergy, 33(5), 834–840.

    Article  CAS  Google Scholar 

  9. Chen, H., & Liu, L. (2007). Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresource Technology, 98(3), 666–676.

    Article  Google Scholar 

  10. Saha, B. C., Iten, L. B., Cotta, M. A., et al. (2005). Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry, 40(12), 3693–3700.

    Article  CAS  Google Scholar 

  11. Mcintosh, S., & Vancov, T. (1981). Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Journal of Biological Chemistry, 256(22), 1496–1502.

    Google Scholar 

  12. Salvachúa, D., Prieto, A., López-Abelairas, M., et al. (2011). Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresource Technology, 102(16), 7500–7506.

    Article  Google Scholar 

  13. Talebnia, F., Karakashev, D., & Angelidaki, I. (2010). Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101(13), 4744–4753.

    Article  CAS  Google Scholar 

  14. Wang, Q., Wang, Z., Fei, S., et al. (2014). Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: evaluating the pretreatment flexibility on feedstocks and particle sizes. Bioresource Technology, 166(8), 420–428.

    Article  CAS  Google Scholar 

  15. Wang, Q., Hu, J., Fei, S., et al. (2016). Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): investigations on pretreatment conditions and structure changes. Bioresource Technology, 199, 245–257.

    Article  CAS  Google Scholar 

  16. Bura, R., Mansfield, S. D., Saddler, J. N., et al. (2002). SO2-catalyzed steam explosion of corn fiber for ethanol production. Applied Biochemistry and Biotechnology, 98(1–9), 59–72.

    Article  Google Scholar 

  17. Yang, L., Li, X., Fei, S., et al. (2014). Responses of biomass briquetting and pelleting to water-involved pretreatments and subsequent enzymatic hydrolysis. Bioresource Technology, 151(1), 54–62.

    Google Scholar 

  18. Wang, Q., Shen, F., Yang, G., et al. (2016). Pretreating Luffa sponge (Luffa cylindrica L.) with concentrated phosphoric acid and subsequent enzymatic saccharification. BioResources, 11(1), 899–912.

    CAS  Google Scholar 

  19. Hendriks, A., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18.

    Article  CAS  Google Scholar 

  20. Zhang, X., Tu, M., & Paice, M. G. (2011). Routes to potential bioproducts from lignocellulosic biomass lignin and hemicelluloses. Bioenergy Research, 4(4), 246–257.

    Article  Google Scholar 

  21. Rappoport, Z. (2006). The chemistry of peroxides. New York: Wiley.

    Book  Google Scholar 

  22. Gierer, J., Yang, E., & Reitberger, T. (1994). On the significance of the superoxide radical (O2/HO2·) in oxidative delignification, studied with 4-t-butylsyringol and 4-t-butylguaiacol. Part I. The mechanism of aromatic ring opening. Holzforschung, 48(5), 405–414.

    Article  CAS  Google Scholar 

  23. Hortling, B., Poppius-Levlin, K., & Widsten, P. (2003). Reactions of conventional Kraft and SuperBatch pulp residual lignins with peroxyformic acid. Journal of Wood Chemistry and Technology, 23(3–4), 305–323.

    Article  Google Scholar 

  24. Yasuda, S., Fukushima, K., & Kakehi, A. (2001). Formation and chemical structures of acid-soluble lignin I: sulfuric acid treatment time and acid-soluble lignin content of hardwood. Journal of Wood Science, 47(1), 69–72.

    Article  CAS  Google Scholar 

  25. Singh, R., Shukla, A., Tiwari, S., et al. (2014). A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews, 32, 713–728.

    Article  CAS  Google Scholar 

  26. Leu, S. Y., & Zhu, J. Y. (2013). Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding. Bioenergy Research, 6(2), 405–415.

    Article  CAS  Google Scholar 

  27. López-Linares, J. C., Ballesteros, I., Tourán, J., et al. (2015). Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production. Bioresource Technology, 190, 97–105.

    Article  Google Scholar 

  28. Mcintosh, S., & Vancov, T. (2011). Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Journal of Biological Chemistry, 35(7), 3094–3103.

    CAS  Google Scholar 

  29. Wildschut, J., Smit, A. T., Reith, J. H., et al. (2013). Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresource Technology, 135(2), 58–66.

    Article  CAS  Google Scholar 

  30. Georgieva, T. I., Hou, X., Hilstrøm, T., et al. (2008). Enzymatic hydrolysis and ethanol fermentation of high dry matter wet-exploded wheat straw at low enzyme loading. Applied Biochemistry and Biotechnology, 148(1–3), 35–44.

    Article  CAS  Google Scholar 

  31. Ertas, M., Han, Q., Jameel, H., et al. (2014). Enzymatic hydrolysis of autohydrolyzed wheat straw followed by refining to produce fermentable sugars. Bioresource Technology, 152, 259–266.

    Article  CAS  Google Scholar 

  32. Ballesteros, I., Ma, J. N., Oliva, J. M., et al. (2006). Ethanol production from steam-explosion pretreated wheat straw. Applied Biochemistry and Biotechnology, 130(1–3), 496–508.

    Article  Google Scholar 

  33. Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. Biotechnology, 3(5), 415–431.

    Google Scholar 

  34. Carolina, B., Silvia, B., Mónica, C., et al. (2011). Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresource Technology, 102(23), 10868–10874.

    Article  Google Scholar 

  35. Moe, S. T., Janga, K. K., Hertzberg, T., et al. (2012). Saccharification of lignocellulosic biomass for biofuel and biorefinery applications—a renaissance for the concentrated acid hydrolysis? Energy Procedia, 20(5), 50–58.

    Article  CAS  Google Scholar 

  36. Otieno, D. O., & Ahring, B. K. (2012). A thermochemical pretreatment process to produce xylooligosaccharides (XOS), arabinooligosaccharides (AOS) and mannooligosaccharides (MOS) from lignocellulosic biomasses. Bioresource Technology, 112, 285–292.

    Article  CAS  Google Scholar 

  37. Zhang, Y. H. P., Ding, S. Y., Mielenz, J. R., et al. (2007). Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnology and Bioengineering, 97, 214–223.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (21306120) and the Program for “Changjiang Scholars and Innovative Research Team in University” (IRT13083) from the Ministry and Education of China. The Department of Science and Technology of Sichuan Province is also appreciated for the funding supports (nos. 2014JQ0037 and 2015NZ0100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Shen.

Electronic supplementary material

ESM 1

(DOCX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Wang, Q., Shen, F. et al. Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification. Appl Biochem Biotechnol 181, 1123–1139 (2017). https://doi.org/10.1007/s12010-016-2273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2273-7

Keywords

Navigation