Skip to main content

Advertisement

Log in

Anti-Metastatic and Anti-Invasion Effects of a Specific Anti-MUC18 scFv Antibody on Breast Cancer Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Breast cancer is the most common malignancy in women. Altered expression of MUC18, a cell surface receptor, and its interaction with Wnt-5a as its ligand, affects the motility and invasiveness of breast cancer cells. In this study, we explored the Wnt-5a binding site and designed an antigenic epitope on the MUC18 receptor using in silico methods. A specific single-chain variable fragment (scFv) was isolated against the epitope by several panning processes. The binding ability of the scFv to the related epitope was evaluated in ELISA and flow cytometry. The inhibitory effects of the selected scFv on MUC18 positive cell line, MDA-MB231, was assessed by migration and invasion assays. The results demonstrated isolation of specific scFv with frequency of 40 % which showed significant binding with the epitope in both ELISA and fluorescence-activated cell sorting (FACS) analyses. The antibody inhibited the migration (76 %) and invasion (67 %) of MUC18 positive cell line. The results suggest the specific anti-MUC18 scFv as an effective antibody for breast cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Structural analysis and verification server. http://nihserver.mbi.ucla.edu/SAVES (accessed on May 5th, 2014).

  2. Andres, J. I., Alcazar, J., Alonso, J. M., Alvarez, R. M., Cid, J. M., De Lucas, A. I., Fernandez, J., Martinez, S., Nieto, C., Pastor, J., Bakker, M. H., Biesmans, I., Heylen, L. I., & Megens, A. A. (2003). Synthesis of 3a,4-dihydro-3H-[1] benzopyrano [4,3-c] isoxazoles , displaying combined 5-HT uptake inhibiting and alpha (2)-adrenoceptor antagonistic activities: a novel series of potential antidepressants. Bioorganic & Medicinal Chemistry Letters, 13, 2719–2725.

    Article  CAS  Google Scholar 

  3. Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22, 195–201.

    Article  CAS  Google Scholar 

  4. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42, W252–W258.

    Article  CAS  Google Scholar 

  5. Chavez, K. J., Garimella, S. V., & Lipkowitz, S. (2010). Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Disease, 32, 35–48.

    Article  Google Scholar 

  6. Deckert, P. M. (2009). Current constructs and targets in clinical development for antibody-based cancer therapy. Current Drug Targets, 10, 158–175.

    Article  CAS  Google Scholar 

  7. Nejatollahi, F., Malek-Hosseini, Z., & Mehrabani, D. (2008). Development of single chain antibodies to P185 tumor antigen. Iranian Red Crescent Medical Journal, 10, 298–302.

    Google Scholar 

  8. Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis, 30(Suppl 1), S162–S173.

    Article  Google Scholar 

  9. Haslam, N. J., & Gibson, T. J. (2010). EpiC: an open resource for exploring epitopes to aid antibody-based experiments. Journal of Proteome Research, 9, 3759–3763.

    Article  CAS  Google Scholar 

  10. Haudenschild, C. C., & Schwartz, S. M. (1979). Endothelial regeneration. II. Restitution of endothelial continuity. Laboratory investigation. A Journal of Technical Methods and Pathology, 41, 407–418.

    CAS  Google Scholar 

  11. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: a Cancer Journal for Clinicians, 61, 69–90.

    Google Scholar 

  12. Keller, T., Kalt, R., Raab, I., Schachner, H., Mayrhofer, C., Kerjaschki, D., & Hantusch, B. (2015). Selection of scFv antibody fragments binding to human blood versus lymphatic endothelial surface antigens by direct cell phage display. PloS One, 10, e0127169.

    Article  Google Scholar 

  13. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845–858.

    Article  CAS  Google Scholar 

  14. Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L., & Schwede, T. (2009). The SWISS-MODEL repository and associated resources. Nucleic Acids Research, 37, D387–D392.

    Article  CAS  Google Scholar 

  15. Lehmann, J. M., Riethmuller, G., & Johnson, a J P. (1989). MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proceedings of the National Academy of Sciences of the United States of America, 86(24), 9891–9895.

    Article  CAS  Google Scholar 

  16. Lei, X., Guan, C. W., Song, Y., & Wang, H. (2015). The multifaceted role of CD146/MCAM in the promotion of melanoma progression. Cancer Cell International, 15, 3.

    Article  Google Scholar 

  17. Liang, C. C., Park, A. Y., & Guan, J. L. (2007). In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols, 2, 329–333.

    Article  CAS  Google Scholar 

  18. Macindoe, G., Mavridis, L., Venkatraman, V., Devignes, M. D., & Ritchie, D. W. (2010). HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Research, 38, W445–W449.

    Article  CAS  Google Scholar 

  19. McSherry, E. A., Donatello, S., Hopkins, A. M., & McDonnell, S. (2007). Molecular basis of invasion in breast cancer. Cellular and Molecular Life Sciences: CMLS, 64, 3201–3218.

    Article  CAS  Google Scholar 

  20. Mohammadi, M., & Nejatollahi, F. (2014). 3D structural modeling of neutralizing scFv against glycoprotein-D of HSV-1 and evaluation of antigen-antibody interactions by bioinformatic methods. International Journal of Pharma and Bio Sciences, 5(4), 835–847.

    Google Scholar 

  21. Monnier, P. P., Vigouroux, R. J., & Tassew, a N G. (2013). In vivo applications of single chain Fv (variable domain) (scFv) fragments. Antibodies, 2, 193–208.

    Article  CAS  Google Scholar 

  22. Mostert, B., Sleijfer, S., Foekens, J. A., & Gratama, J. W. (2009). Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treatment Reviews, 35, 463–474.

    Article  CAS  Google Scholar 

  23. Nejatollahi, F., Asgharpour, M., & Jaberipour, M. (2012). Down-regulation of vascular endothelial growth factor expression by anti-Her2/neu single chain antibodies. Medical Oncology, 29, 378–383.

    Article  CAS  Google Scholar 

  24. Nejatollahi, F., Ranjbar, R., Younesi, V., & Asgharpour, M. (2012). Deregulation of HER2 downstream signaling in breast cancer cells by a cocktail of anti-HER2 scFvs. Oncology Research, 20, 333–340(338).

    Article  Google Scholar 

  25. Nejatollahi, F., Abdi, S., & Asgharpour, M. (2013). Antiproliferative and apoptotic effects of a specific antiprostate stem cell single chain antibody on human prostate cancer cells. Journal of Oncology, 2013, 839831.

    Article  Google Scholar 

  26. Nejatollahi F, Jaberipour M, Asgharpour M (2014) Triple blockade of HER2 by a cocktail of anti-HER2 scFv antibodies induces high antiproliferative effects in breast cancer cells. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine

  27. Nelson, A. L. (2010). Antibody fragments: hope and hype. MAbs, 2, 77–83.

    Article  Google Scholar 

  28. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.

    Article  CAS  Google Scholar 

  29. Todaro, G. J., Lazar, G. K., & Green, H. (1965). The initiation of cell division in a contact-inhibited mammalian cell line. Journal of Cellular Physiology, 66, 325–333.

    Article  CAS  Google Scholar 

  30. Witze, E. S., Connacher, M. K., Houel, S., Schwartz, M. P., Morphew, M. K., Reid, L., Sacks, D. B., Anseth, K. S., & Ahn, N. G. (2013). Wnt5a directs polarized calcium gradients by recruiting cortical endoplasmic reticulum to the cell trailing edge. Developmental Cell, 26, 645–657.

    Article  CAS  Google Scholar 

  31. Wu, G.-J. (2012). MCAM (melanoma cell adhesion molecule). Atlas of Genetics and Cytogenetics in Oncology Haematology, 16, 7.

    Google Scholar 

  32. Wu, G. J., Wu, M. W., Wang, S. W., Liu, Z., Qu, P., Peng, Q., Yang, H., Varma, V. A., Sun, Q. C., Petros, J. A., Lim, S. D., & Amin, M. B. (2001). Isolation and characterization of the major form of human MUC18 cDNA gene and correlation of MUC18 over-expression in prostate cancer cell lines and tissues with malignant progression. Gene, 279, 17–31.

    Article  CAS  Google Scholar 

  33. Ye, Z., Zhang, C., Tu, T., Sun, M., Liu, D., Lu, D., Feng, J., Yang, D., Liu, F., & Yan, X. (2013). Wnt5a uses CD146 as a receptor to regulate cell motility and convergent extension. Nature Communications, 4, 2803.

    Google Scholar 

  34. Zeng, Q., Li, W., Lu, D., Wu, Z., Duan, H., Luo, Y., Feng, J., Yang, D., Fu, L., & Yan, X. (2012). CD146, an epithelial-mesenchymal transition inducer, is associated with triple-negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 109, 1127–1132.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article was extracted from PhD thesis written by Mozafar Mohammadi, grant No 93-7365 and financially supported by Shiraz University of Medical Sciences, Shiraz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foroogh Nejatollahi.

Ethics declarations

Conflicts of Interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Nejatollahi, F., Ghasemi, Y. et al. Anti-Metastatic and Anti-Invasion Effects of a Specific Anti-MUC18 scFv Antibody on Breast Cancer Cells. Appl Biochem Biotechnol 181, 379–390 (2017). https://doi.org/10.1007/s12010-016-2218-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2218-1

Keywords

Navigation