Skip to main content

Advertisement

Log in

The Protein/Peptide Direct Virus Inactivation During Chromatographic Process: Developing Approaches

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Virus clearance is required for pharmaceutical preparations derived from animal or human sources such as blood products, vaccines, recombinant proteins produced in mammalian cell lines, etc. High cost and substantial protein losses during virus inactivation are significant problems for protein/peptide manufacturing. The goal of this project was to develop a method to perform virus inactivation in a course of protein chromatographic purification. Another goal was to show that the chromatographic adsorbent can serve as reliable “sieva” for mechanical washing away of infecting viruses. Using chromatographic, photometric, IFA, and RT-PCR approaches, it was discovered that high temperature-depending dynamic capacity of adsorbent allowed to perform a virus inactivation directly in a chromatographic column by solvent/detergent treatment. The peptide/protein biological activity was completely preserved. Using this new approach enveloped and nonenveloped viruses were effectively removed protein preparation. In addition, it was shown that RT-PCR method demonstrates more precise and reproducible results and robust properties for assessment of virus reduction than virus titer followed by infectivity studies. Presented method allowed to obtain the factor of virus concentration decrease (FVD) values that were higher than those provided by known technologies and was sufficient for a full inactivation of viruses. The method is recommended to use in pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Neurath, A.R., Horowitz, B. (1985). Undenatured virus-free biologically active protein derivatives. Patent US no. 4540573.

  2. Fisher, S., Chen, Q., Norling, L. (2015). Methods for viral inactivation using eco-friendly detergents. Patent WO 2015/073633 A1.

  3. Viswanathan, C., Kuppusamy, M., Kamath, M., Baikar, V., Tanavade, A., Prasad, N.R., Dhundi, R. (2010). Process for removal of solvent and detergent from plasma. Patent US no. 7662411 B2.

  4. El-Ekiaby, M., Sayed, M. A., Caron, C., Burnouf, S., El-Sharkawy, N., Goubran, H., Radosevich, M., Goudemand, J., Blum, D., de Melo, L., Soulié, V., Adam, J., & Burnouf, T. (2010). Solvent-detergent filtered (S/D-F) fresh frozen plasma and cryoprecipitate minipools prepared in a newly designed integral disposable processing bag system. Transfusion Medicine, 20(1), 48–61.

    Article  CAS  Google Scholar 

  5. Roberts, P. L., Lloyd, D., & Marshall, P. J. (2009). Virus inactivation in a factor VIII/vWF concentrate using a solvent/detergent procedure based on polysorbate 20. Biologicals, 37(1), 26–31.

    Article  CAS  Google Scholar 

  6. Aghaie, A., Pourfatollah, A. A., Bathaie, S. Z., Moazzeni, S. M., Khorsand Mohammad Pour, H., & Banazadeh, S. (2010). Preparation, purification and virus inactivation of intravenous immunoglobulin from human plasma. Human Antibodies, 19(1), 1–6.

    CAS  Google Scholar 

  7. Zubkova, N. V., Anastasiev, V. V., Kyuregyan, K. K., Mikhailov, M. I., Lobastova, A. K., & Krasil’nikov, I. V. (2013). Estimation of efficiency of solvent-detergent method for virus inactivation in the technology of immunoglobulin production on the model of duck hepatitis B virus. Byulleten’ Eksperimental’noi Biologii i Meditsiny, 155(6), 788–792.

    Google Scholar 

  8. Kim, I. S., Choi, Y. W., Kang, Y., Sung, H. M., & Shin, J. S. (2008). Dry-heat treatment process for enhancing viral safety of an antihemophilic factor VIII concentrate prepared from human plasma. Journal of Microbiology and Biotechnology, 18(5), 997–1003.

    CAS  Google Scholar 

  9. Dichtelmüller, H. J., Flechsig, E., Sananes, F., Kretschmar, M., & Dougherty, C. J. (2012). Effective virus inactivation and removal by steps of biotest pharmaceutical IGIV production process. Results in Immunology, 2, 19–24.

    Article  Google Scholar 

  10. Zhu, L., Pan, J., Wei, C., Wang, H., Xiang, R., Zhang, J., & Wang, D. (2015). The effectiveness of riboflavin photochemical-mediated virus inactivation and changes in protein retention in fresh-frozen plasma treated using a flow-based treatment device. Transfusion, 55(1), 100–107.

    Article  CAS  Google Scholar 

  11. Moore, M. A. (2012). Inactivation of enveloped and non-enveloped viruses on seeded human tissues by gamma irradiation. Cell and Tissue Banking, 13(3), 401–407.

    Article  CAS  Google Scholar 

  12. Pisal, D. S., Kosloski, M. P., & Balu-Iyer, S. V. (2010). Delivery of therapeutic proteins. Journal of Pharmaceutical Sciences, 99(6), 2557–2575.

    Article  CAS  Google Scholar 

  13. Gholikandi, G. B., Dehghanifard, E., Sepehr, M. N., Torabian, A., Moalej, S., Dehnavi, A., Yari, A. R., & Asgari, A. R. (2012). Performance evaluation of different filter media in turbidity removal from water by application of modified qualitative indices. Iran Journal Public Health, 41(4), 87–93.

    Google Scholar 

  14. Roberts, P. L. (2014). Virus elimination during the purification of monoclonal antibodies by column chromatography and additional steps. Biotechnology Progress, 30(6), 1341–1347.

    Article  CAS  Google Scholar 

  15. Chang, B. H., & Bae, Y. C. (2003). Salting-out in the aqueous single-protein solution: the effect of shape factor. Biophysical Chemistry, 104(2), 523–533.

    Article  CAS  Google Scholar 

  16. Pace, C. N., Fu, H., Fryar, K. L., Landua, J., Trevino, S. R., Shirley, B. A., Hendricks, M. M., Iimura, S., Gajiwala, K., Scholtz, J. M., & Grimsley, G. R. (2011). Contribution of hydrophobic interactions to protein stability. Journal of Molecular Biology, 408(3), 514–528.

    Article  CAS  Google Scholar 

  17. Mchaourab, H. S., Godar, J. A., & Stewart, P. L. (2009). Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry, 48(18), 3828–3837.

    Article  CAS  Google Scholar 

  18. Quan, S., Koldewey, P., Tapley, T., Kirsch, N., Ruane, K. M., Pfizenmaier, J., Shi, R., & Hofmann, S. (2011). Genetic selection designed to stabilize proteins uncovers a chaperone called spy. Nature Structural & Molecular Biology, 18(3), 262–269.

    Article  CAS  Google Scholar 

  19. Chou, M.-L., Burnouf, T., Chang, S.-P., Hung, T.-C., Lin, C.-C., Richardson, C. D., & Lin, L.-T. (2015). TnBP/Triton X-45 treatment of plasma for transfusion efficiently inactivates hepatitis C virus. PloS One, 10(2), e0117800.

    Article  Google Scholar 

  20. Fellner, M. D., Durand, K., Rodriguez, M., Irazu, L., Alonio, V., & Picconi, M. A. (2014). Duplex realtime PCR method for Epstein-Barr virus and human DNA quantification its application for post-transplant lymphoproliferative disorders detection. The Brazilian Journal of Infectious Diseases, 18(3), 271–280.

    Article  Google Scholar 

  21. Al-Sherbiny, M., Osman, A., Mohamed, N., Shata, M. T., Abdel-Aziz, F., Abdel-Hamid, M., Abdelwahab, S. F., Mikhail, N., Stoszek, S., Ruggeri, L., Folgory, A., Nicosia, A., Prince, A. M., & Strickland, G. T. (2005). Exposure to hepatitis C virus induces cellular immune responses without detectable viremia or seroconversion. The American Journal of Tropical Medicine and Hygiene, 73(1), 44–49.

    Google Scholar 

  22. Mackay, I. M., Arden, K. E., & Nitsche, A. (2002). Real-time PCR in virology. Nucleic Acids Research, 30(6), 1292–1305.

    Article  CAS  Google Scholar 

  23. Volkov, G. L., Krasnobryzha, I. N., Gavrilyuk, S. P., Karbovskyi, V. L., Buyanbadrakh, B., Byambasuren, S., Dashnyam, P., Nandintsetseg, N., Dugerzhonzhouu, S., Skalka, V. V., Gavriliuk, E. S., Purev, T. B., & Nemekh, A. (2009). Manufacturing-scale chromatography of proteins with similar physico-chemical properties. Biopharmaceutical Journal, 1(4), 20–34.

    CAS  Google Scholar 

  24. Volkov, G. L., Gavrylyuk, S. P., & Savchuk, O. M. (2008). Manufacturing of activating plasminogen hydrolysis streptokinase fragment with molecular weight of 7 kDa. Mongolia Patent No., 3168.

  25. Skalka, V. V., Krasnobryzha, E. N., Volkov, G. L., Gavrilyuk, S. P., Zhukova, A. I., Nandintsetseg, N., Tuvaansuren, C., Ganbold, O., Buyanbadrakh, B., Byambasuren, S., Dashnyam, P., Darmostuk, M. S., & Gavryliuk, E. S. (2010). Purification and characterization of fibrino(geno)lytic enzyme from Agkistrodon blomhoffi venom. Biopharmaceutical Journal, 2(2), 32–39.

    CAS  Google Scholar 

  26. Bradford, M. M. (1976). A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  27. Stoscheck, C. M. (1990). Quantitation of protein. Methods in Enzymology, 182, 50–69.

    Article  CAS  Google Scholar 

  28. Kaerber, G. (1931). Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn Schmiedbergs Arch. Exp. Pathol. Pharmakol., 162, 480–483.

    Article  Google Scholar 

  29. Spearman, C. (1908). The method of “right and wrong cases” (“constant stimuli”) without Gauss’s formulae. Br. J. Psyhol., 2, 277–282.

    Google Scholar 

  30. Uruno, K., Shibata, I., & Nakane, T. (1998). Detection of bovine viral diarrhea virus (BVDV) using reverse transcription polymerase chain reaction assay. The Journal of Veterinary Medical Science, 60(7), 867–870.

    Article  CAS  Google Scholar 

  31. Ley, V., Higgins, J., & Fayer, R. (2002). Bovine enteroviruses as indicators of fecal contamination. Applied and Environmental Microbiology, 68(7), 3455–3461.

    Article  CAS  Google Scholar 

  32. Wang, Y., Li, Y., Yang, C., Hui, L., Han, Q., Ma, L., Wang, Q., Yang, G., & Liu, Z. (2013). Development and application of a universal Taqman real-time PCR for quantitation of duck hepatitis B virus DNA. Journal of Virological Methods, 191(1), 41–47.

    Article  CAS  Google Scholar 

  33. Sharma, P., Rastogi, A., Kukreti, K., & Narwal, P. S. (2012). Sensitivity assay of polymerase chain reaction for detection of canine parvo virus infection in dogs. Open Journal of Clinical Diagnostic, 2, 45–47.

    Article  Google Scholar 

  34. Kapil, S., Cooper, E., Lamm, C., Murray, D., Rezabek, G., Johnston III, L., Campbell, G., & Johnson, B. (2007). Canine parvovirus type 2c and 2b circulating in North American dogs in 2006 and 2007. Journal of Clinical Microbiology, 45(12), 4044–4047.

    Article  CAS  Google Scholar 

  35. Tombacz, D., Csabai, Z., Olah, P., Havelda, Z., Sharon, D., Snyder, M., & Boldogköi, Z. (2015). Characterization of novel transcripts in pseudorabies virus. Viruses, 7(5), 2727–2744.

    Article  CAS  Google Scholar 

  36. Lin, Z., Puetter, A., Coco, J., Xu, G., Strong, M. J., Wang, X., Fewell, C., Baddoo, M., Taylor, C., & Flemington, E. K. (2012). Detection of murine leukemia virus in the Epstein-Barr virus-positive human B-cell line JY, using a computational RNA-seq-based exogenous agent detection pipeline PARSES. Journal of Virology, 86(6), 2970–2977.

    Article  CAS  Google Scholar 

  37. Nellaiappan, K., Nicklas, G., Yao, S., & Malliaros, D. P. (2001). Validation of a simple and sensitive gas chromatographic method for the analysis of tri-n-butyl phosphate from virally inactivated human immunoglobulin. Journal Cromatogr B, 757(1), 181–189.

    Article  CAS  Google Scholar 

  38. Strancar, A., Raspor, P., Schwinn, H., Schutz, R., & Josic, D. (1994). Application of convective interaction media (CIM) supports for on-column solid phase extraction of Triton X-100 and its determination in virus-inactivated human plasma by the solvent-detergent method. Journal of Chromatography A, 658(2), 475–481.

    Article  CAS  Google Scholar 

  39. Vasilenko, О. А. (2011). Mathematical and statistical methods of analysis for applied research: a training manual. Odesa, Ukraine: O.S. Popov Odesa’ National Academy of Communication.

    Google Scholar 

  40. Volkov, G.L. (2010). Increase in the yield of purified proteins in processes requiring virus inactivation. 2nd International Congress-Partnering EurasiaBio, April 13–15, 2010. Moscow, Russia.

  41. Finkelschtein, A. V., & Ptitsin, O. B. (2000). Introduction to physic of the proteins: course of lectures. Moscow, Russia: Mir.

    Google Scholar 

  42. World Health Organization: WHO Technical Report, Series No. 924, (2004). Annex 4: Guidelines on viral inactivation and removal procedures intended to assure the viral safety of human blood plasma products; 3.3 Validation of viral inactivation and removal procedures.

  43. Miesegaes, G. (2014). Viral clearance by traditional operations with significant knowledge gaps (session II): cation exchange chromatography (CEX) and detergent inactivation. PDA Journal of Pharmaceutical Science and Technology, 68, 30–37.

    Article  Google Scholar 

  44. Remington, K. M. (2015). Fundamental strategies for viral clearance. Part 2: technical approaches. Bioprocess International, 13(5), 10–17.

    Google Scholar 

Download references

Acknowledgments

The authors express profound gratitude to the staff of pilot plant of scientific and manufacturing firm Shijir International Co. Ltd., Sukhbaatar sq., Bodi Tower building, Ulaanbaatar, Mongolia for the opportunity to intervene in the real manufacturing processes and to test the represented method on the pilot plant in the Raining (Boroo) Valley of Mongolia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgii L. Volkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, G.L., Havryliuk, S.P., Krasnobryzha, I.M. et al. The Protein/Peptide Direct Virus Inactivation During Chromatographic Process: Developing Approaches. Appl Biochem Biotechnol 181, 233–249 (2017). https://doi.org/10.1007/s12010-016-2209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2209-2

Keywords

Navigation