Skip to main content
Log in

ACE-Inhibitory and Antioxidant Activities of Peptide Fragments Obtained from Tomato Processing By-Products Fermented Using Bacillus subtilis: Effect of Amino Acid Composition and Peptides Molecular Mass Distribution

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of amino acid composition and peptide molecular mass on ACE-inhibitory and antioxidant activities of protein fragments obtained from tomato waste fermented using Bacillus subtilis were evaluated. The addition of B. subtilis increased the relative amounts of aromatic and positively-charged amino acids which have been described to influence the biological activities of peptide fragments. IC50 values of hydrolysates for ACE-inhibitory and 2, 2′-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities were found to be 1.5 and 8.2 mg/mL, respectively. Size-exclusion chromatography (SEC) pattern of the hydrolysate indicated the breakdown of parent proteins to smaller peptides with molecular weights mainly below 1400 Da. MALDI-TOF mass spectrometry analysis revealed that the highest ACE-inhibitory activity was due to peptides showing molecular mass range 500–800 Da, while the most active antioxidant peptides were found to be mainly at the two different peptide weight ranges 500–800 Da and 1200–1500 Da.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li, Y., Zhou, J., Huang, K., Sun, Y., & Zeng, X. (2012). Purification of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide with an antihypertensive effect from loach (Misgurnus anguillicaudatus). Journal of Agricultural and Food Chemistry, 60(5), 1320–1325.

    Article  CAS  Google Scholar 

  2. Sentandreu, M. Á., & Toldrá, F. (2006). A rapid, simple and sensitive fluorescence method for the assay of angiotensin-I converting enzyme. Food Chemistry, 97(3), 546–554.

    Article  CAS  Google Scholar 

  3. Tsai, J.-S., Chen, T.-J., Pan, B. S., Gong, S.-D., & Chung, M.-Y. (2008). Antihypertensive effect of bioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chemistry, 106(2), 552–558.

    Article  CAS  Google Scholar 

  4. Kleekayai, T., Harnedy, P. A., O’Keeffe, M. B., Poyarkov, A. A., CunhaNeves, A., Suntornsuk, W., & FitzGerald, R. J. (2015). Extraction of antioxidant and ACE inhibitory peptides from Thai traditional fermented shrimp pastes. Food Chemistry, 176, 441–447.

    Article  CAS  Google Scholar 

  5. Ambigaipalan, P., Al-Khalifa, A. S., & Shahidi, F. (2015). Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin. Journal of Functional Foods, 18, 1125–1137.

    Article  CAS  Google Scholar 

  6. Samaranayaka, A. G. P., & Li-Chan, E. C. Y. (2011). Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. Journal of Functional Foods, 3(4), 229–254.

    Article  CAS  Google Scholar 

  7. Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides, 31(10), 1949–1956.

    Article  CAS  Google Scholar 

  8. Lassoued, I., Mora, L., Nasri, R., Jridi, M., Toldrá, F., Aristoy, M.-C., & Nasri, M. (2015). Characterization and comparative assessment of antioxidant and ACE inhibitory activities of thornback ray gelatin hydrolysates. Journal of Functional Foods, 13, 225–238.

    Article  CAS  Google Scholar 

  9. Esteve, C., Marina, M. L., & García, M. C. (2015). Novel strategy for the revalorization of olive (Olea europaea) residues based on the extraction of bioactive peptides. Food Chemistry, 167, 272–280.

    Article  CAS  Google Scholar 

  10. García, M. C., Endermann, J., González-García, E., & Marina, M. L. (2015). HPLC-Q-TOF-MS identification of antioxidant and antihypertensive peptides recovered from cherry (Prunus cerasus L.) Subproducts. Journal of Agricultural and Food Chemistry, 63(5), 1514–1520.

    Article  Google Scholar 

  11. Sogi, D. S., Arora, M. S., Garg, S. K., & Bawa, A. S. (2002). Fractionation and electrophoresis of tomato waste seed proteins. Food Chemistry, 76(4), 449–454.

    Article  CAS  Google Scholar 

  12. Moayedi, A., Hashemi, M., & Safari, M. (2016). Valorization of tomato waste proteins through production of antioxidant and antibacterial hydrolysates by proteolytic Bacillus subtilis: optimization of fermentation conditions. Journal of Food Science and Technology, 53(1), 391–400.

    Article  CAS  Google Scholar 

  13. Aristoy, M. C., & Toldra, F. (1991). Deproteinization techniques for HPLC amino acid analysis in fresh pork muscle and dry-cured ham. Journal of Agricultural and Food Chemistry, 39(10), 1792–1795.

    Article  CAS  Google Scholar 

  14. Jemil, I., Jridi, M., Nasri, R., Ktari, N., Salem, R. B. S.-B., Mehiri, M., & Nasri, M. (2014). Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochemistry, 49(6), 963–972.

    Article  CAS  Google Scholar 

  15. Yildirim, A., Mavi, A., & Kara, A. A. (2001). Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. Journal of Agricultural and Food Chemistry, 49(8), 4083–4089.

    Article  CAS  Google Scholar 

  16. Fontoura, R., Daroit, D. J., Correa, A. P. F., Meira, S. M. M., Mosquera, M., & Brandelli, A. (2014). Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme-and dipeptidyl peptidase-IV-inhibitory activities. New Biotechnology, 31(5), 506–513.

    Article  CAS  Google Scholar 

  17. Hu, Y., Ge, C., Yuan, W., Zhu, R., Zhang, W., Du, L., & Xue, J. (2010). Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. Journal of the Science of Food and Agriculture, 90(7), 1194–1202.

    Article  CAS  Google Scholar 

  18. Limón, R. I., Peñas, E., Torino, M. I., Martínez-Villaluenga, C., Dueñas, M., & Frias, J. (2015). Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chemistry, 172, 343–352.

    Article  Google Scholar 

  19. Nasri, R., Chataigné, G., Bougatef, A., Chaâbouni, M. K., Dhulster, P., Nasri, M., & Nedjar-Arroume, N. (2013). Novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of goby (Zosterisessor ophiocephalus) muscle proteins. Journal of Proteomics, 91, 444–452.

    Article  CAS  Google Scholar 

  20. Salampessy, J., Reddy, N., Kailasapathy, K., & Phillips, M. (2015). Functional and potential therapeutic ACE-inhibitory peptides derived from bromelain hydrolysis of trevally proteins. Journal of Functional Foods, 14, 716–725.

    Article  CAS  Google Scholar 

  21. Corrêa, A. P. F., Daroit, D. J., Fontoura, R., Meira, S. M. M., Segalin, J., & Brandelli, A. (2014). Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides, 61, 48–55.

    Article  Google Scholar 

  22. Balakrishnan, B., Prasad, B., Rai, A. K., Velappan, S. P., Subbanna, M. N., & Narayan, B. (2011). In vitro antioxidant and antibacterial properties of hydrolysed proteins of delimed tannery fleshings: comparison of acid hydrolysis and fermentation methods. Biodegradation, 22(2), 287–295.

    Article  CAS  Google Scholar 

  23. Nasri, R., Younes, I., Jridi, M., Trigui, M., Bougatef, A., Nedjar-Arroume, N., & Karra-Châabouni, M. (2013). ACE inhibitory and antioxidative activities of Goby (Zosterissessor ophiocephalus) fish protein hydrolysates: effect on meat lipid oxidation. Food Research International, 54(1), 552–561.

    Article  CAS  Google Scholar 

  24. He, R., Ju, X., Yuan, J., Wang, L., Girgih, A. T., & Aluko, R. E. (2012). Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Research International, 49(1), 432–438.

    Article  CAS  Google Scholar 

  25. Corrêa, A. P. F., Daroit, D. J., Coelho, J., Meira, S. M. M., Lopes, F. C., Segalin, J., & Brandelli, A. (2011). Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease. Journal of the Science of Food and Agriculture, 91(12), 2247–2254.

    Google Scholar 

  26. Ngo, D.-H., Kang, K.-H., Ryu, B., Vo, T.-S., Jung, W.-K., Byun, H.-G., & Kim, S.-K. (2015). Angiotensin-I converting enzyme inhibitory peptides from antihypertensive skate (Okamejei kenojei) skin gelatin hydrolysate in spontaneously hypertensive rats. Food Chemistry, 174, 37–43.

    Article  CAS  Google Scholar 

  27. Shahidi, F., & Zhong, Y. (2008). Bioactive peptides. Journal of AOAC International, 91(4), 914–931.

    CAS  Google Scholar 

  28. Gupta, R., Beg, Q., Khan, S., & Chauhan, B. (2002). An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Applied Microbiology and Biotechnology, 60(4), 381–395.

    Article  CAS  Google Scholar 

  29. Harwood, C. R. (1992). Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends in Biotechnology, 10, 247–256.

    Article  CAS  Google Scholar 

  30. Mora, L., Escudero, E., Fraser, P. D., Aristoy, M.-C., & Toldrá, F. (2014). Proteomic identification of antioxidant peptides from 400 to 2500Da generated in Spanish dry-cured ham contained in a size-exclusion chromatography fraction. Food Research International, 56, 68–76.

    Article  CAS  Google Scholar 

  31. Zhang, S. B., Wang, Z., & Xu, S. Y. (2008). Antioxidant and antithrombotic activities of rapeseed peptides. Journal of the American Oil Chemists' Society, 85(6), 521–527.

    Article  CAS  Google Scholar 

  32. Ruiz-Ruiz, J., Dávila-Ortíz, G., Chel-Guerrero, L., & Betancur-Ancona, D. (2013). Angiotensin i-converting enzyme inhibitory and antioxidant peptide fractions from hard-to-cook bean enzymatic hydrolysates. Journal of Food Biochemistry, 37(1), 26–35.

    Article  CAS  Google Scholar 

  33. Chalamaiah, M., Jyothirmayi, T., Bhaskarachary, K., Vajreswari, A., Hemalatha, R., & Kumar, B. D. (2013). Chemical composition, molecular mass distribution and antioxidant capacity of rohu (Labeo rohita) roe (egg) protein hydrolysates prepared by gastrointestinal proteases. Food Research International, 52(1), 221–229.

    Article  CAS  Google Scholar 

  34. Cheung, I. W. Y., Cheung, L. K. Y., Tan, N. Y., & Li-Chan, E. C. Y. (2012). The role of molecular size in antioxidant activity of peptide fractions from Pacific hake (Merluccius productus) hydrolysates. Food Chemistry, 134(3), 1297–1306.

    Article  CAS  Google Scholar 

  35. Nasri, R., Jridi, M., Lassoued, I., Jemil, I., Salem, R. B. S.-B., Nasri, M., & Karra-Châabouni, M. (2014). The influence of the extent of enzymatic hydrolysis on antioxidative properties and ACE-inhibitory activities of protein hydrolysates from goby (Zosterisessor ophiocephalus) muscle. Applied Biochemistry and Biotechnology, 173(5), 1121–1134.

    Article  CAS  Google Scholar 

  36. Chen, N., Yang, H., Sun, Y., Niu, J., & Liu, S. (2012). Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Peptides, 38(2), 344–349.

    Article  CAS  Google Scholar 

  37. Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., & Xue, S. J. (2008). Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry, 108(2), 727–736.

    Article  CAS  Google Scholar 

  38. Kim, S.-Y., Je, J.-Y., & Kim, S.-K. (2007). Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. The Journal of Nutritional Biochemistry, 18(1), 31–38.

    Article  CAS  Google Scholar 

  39. Je, J.-Y., Park, P.-J., & Kim, S.-K. (2005). Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research International, 38(1), 45–50.

    Article  CAS  Google Scholar 

  40. Wu, H.-C., Chen, H.-M., & Shiau, C.-Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36(9), 949–957.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Ministry of Science, Research and Technology of Iran and the Emerging Research Group Grant from Generalitat Valenciana of Spain (GV/2015/138) and JAEDOC-CSIC postdoctoral contract of L.M. cofunded by the European Social Fund are acknowledged. MALDI-TOF analysis was carried out by in the SCSIE University of Valencia Proteomics Unit (Spain), a member of ISCIII ProteoRed Proteomics Platform. Authors would like to thank the helpful support of Carolina Diaz Noriega as technician.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fidel Toldrá.

Ethics declarations

Funding

This study was funded by Grant of Ministry of Science, Research and Technology of Iran and Emerging Research Group Grant from Generalitat Valenciana in Spain (GV/2015/138). Also, a JAEDOC-CSIC postdoctoral contract was cofunded by the European Social Fund to Dr. Mora.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moayedi, A., Mora, L., Aristoy, MC. et al. ACE-Inhibitory and Antioxidant Activities of Peptide Fragments Obtained from Tomato Processing By-Products Fermented Using Bacillus subtilis: Effect of Amino Acid Composition and Peptides Molecular Mass Distribution. Appl Biochem Biotechnol 181, 48–64 (2017). https://doi.org/10.1007/s12010-016-2198-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2198-1

Keywords

Navigation