Skip to main content
Log in

Evaluation of the Fermentation Potential of Pulp Mill Residue to Produce d(−)-Lactic Acid by Separate Hydrolysis and Fermentation Using Lactobacillus coryniformis subsp. torquens

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lactic acid is widely used in chemical, pharmaceutical, cosmetic, and food industries, besides it is the building block to produce polylactic acid, which is a sustainable alternative biopolymer to synthetic plastic due to its biodegradability. Aiming at producing an optically pure isomer, the present work evaluated the potential of pulp mill residue as feedstock to produce d(−)-lactic acid by a strain of the bacterium Lactobacillus coryniformis subsp. torquens using separate hydrolysis and fermentation process. Enzymatic hydrolysis, optimized through response surface methodology for 1 g:4 mL solid/liquid ratio and 24.8 FPU/gcellulose enzyme loading, resulted in 140 g L−1 total reducing sugar and 110 g L−1 glucose after 48 h, leading to 61 % of efficiency. In instrumented bioreactor, 57 g L−1 of d(−)-lactic acid was achieved in 20 h of fermentation, while only 0.5 g L−1 of l(+)-lactic acid was generated. Furthermore, product yield of 0.97 g/g and volumetric productivity of 2.8 g L−1 h−1 were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., González, J. M. D., Converti, A., & Oliveira, R. P. S. (2013). Lactic acid properties, applications and production: a review. Trends in Food Science and Technology, 30, 70–83.

    Article  CAS  Google Scholar 

  2. Oshiro, M., Shinto, H., Tashiro, Y., Miwa, N., Sekiguchi, T., Okamoto, M., & Sonomoto, K. (2009). Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1. Journal of Bioscience and Bioengineering, 108, 376–384. doi:10.1016/j.jbiosc.2009.05.003.

    Article  CAS  Google Scholar 

  3. Adnan, A. F. M., & Tan, I. K. P. (2007). Isolation of lactic acid bacteria from Malaysian foods and assessment of the isolates for industrial potential. Bioresource Technology, 98, 1380–1385. doi:10.1016/j.biortech.2006.05.034.

    Article  Google Scholar 

  4. Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2011). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. Journal of Biotechnology, 156, 286–301. doi:10.1016/j.jbiotec.2011.06.017.

    Article  CAS  Google Scholar 

  5. Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology, 69, 627–642. doi:10.1007/s00253-005-0229-x.

    Article  CAS  Google Scholar 

  6. Hofvendahl, K., & Hahn–Hagerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology, 26, 87–107.

    Article  CAS  Google Scholar 

  7. Li, Y., & Cui, F. (2010). Microbial lactic acid production from renewable resources. In O. V. Singh & S. P. Harvey (Eds.), Sustainable biotechnology: sources of renewable energy (pp. 211–228). Dordrecht: Springer. doi:10.1007/978-90-481-3295-9_11.

    Chapter  Google Scholar 

  8. Mazzoli, R., Bosco, F., Mizrahi, I., Bayer, E. A., & Pessione, E. (2014). Towards lactic acid bacteria-based biorefineries. Biotechnology Advances, 32, 1216–1236. doi:10.1016/j.biotechadv.2014.07.005.

    Article  CAS  Google Scholar 

  9. Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31, 877–902. doi:10.1016/j.biotechadv.2013.04.002.

    Article  CAS  Google Scholar 

  10. Werpy, T., & Petersen, G. (2004). Top value added chemicals from biomass: volume I—results of screening for potential candidates from sugars and synthesis gas. United States: U.S. Department of Energy—Energy Efficiency and Renewable Energy.

    Google Scholar 

  11. Okano, K., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2010). Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Applied Microbiology and Biotechnology, 85, 413–423. doi:10.1007/s00253-009-2280-5.

    Article  CAS  Google Scholar 

  12. Eveleigh, D. E., Mandels, M., Andreotti, R., & Roche, C. (2009). Measurement of saccharifying cellulase. Biotechnology for Biofuels, 2, 1–8. doi:10.1186/1754-6834-2-21.

    Article  Google Scholar 

  13. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  14. Silva, N. L. C., Betancur, G. J. V., Vásquez, M. P., Gomes, E. B., & Pereira Jr., N. (2011). Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process. Applied Biochemistry and Biotechnology, 163, 928–936. doi:10.1007/s12010-010-9096-8.

    Article  CAS  Google Scholar 

  15. González-Vara, A., Pinelli, D., Rossi, M., Fajner, D., Magelli, F., & Matteuzzi, D. (1996). Production of L(+) and D(−) lactic acid isomers by Lactobacillus casei subsp. casei DSM 20011 and Lactobacillus coryniformis subsp. torquens DSM 20004 in continuous fermentation. Journal of Fermentation and Bioengineering, 81, 548–552.

    Article  Google Scholar 

  16. Yáñez, R., Moldes, A. B., Alonso, J. L., & Parajó, J. C. (2003). Production of D(−)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnology Letters, 25, 1161–1164.

    Article  Google Scholar 

  17. Yáñez, R., Alonso, J. L., & Parajó, J. C. (2005). D-lactic acid production from waste cardboard. Journal of Chemical Technology and Biotechnology, 80, 76–84. doi:10.1002/jctb.1160.

    Article  Google Scholar 

  18. Marques, S., Santos, J. A. L., Gírio, F. M., & Roseiro, J. C. (2008). Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation. Biochemical Engineering Journal, 41, 210–216. doi:10.1016/j.bej.2008.04.018.

    Article  CAS  Google Scholar 

  19. Budhavaram, N. K., & Fan, Z. (2009). Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains. Bioresource Technology, 100, 5966–5972. doi:10.1016/j.biortech.2009.01.080.

    Article  CAS  Google Scholar 

  20. Wee, Y. J., & Ryu, H. W. (2009). Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials. Bioresource Technology, 100, 4262–4270. doi:10.1016/j.biortech.2009.03.074.

    Article  CAS  Google Scholar 

  21. Zhang, Y., & Vadlani, P. V. (2013). D-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation. Biotechnology and Bioprocess Engineering, 36, 1897–1904. doi:10.1007/s00449-013-0965-8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the colleagues of LADEBIO/EQ/UFRJ for all technical support during the experiments and the AGIR/UFF for PIBITI scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nei Pereira Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Moraes, A., Ramirez, N.I.B. & Pereira, N. Evaluation of the Fermentation Potential of Pulp Mill Residue to Produce d(−)-Lactic Acid by Separate Hydrolysis and Fermentation Using Lactobacillus coryniformis subsp. torquens . Appl Biochem Biotechnol 180, 1574–1585 (2016). https://doi.org/10.1007/s12010-016-2188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2188-3

Keywords

Navigation