Skip to main content
Log in

Enhancement of Nutritional and Antioxidant Properties of Peanut Meal by Bio-modification with Bacillus licheniformis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Peanut meal (PM) is limited in practical use (feed or food) from imbalance of amino acid profile and denaturation of protein. Fermentation was used to promote its nutritional and functional properties by single-factor experiments and orthogonal experiments. Results showed that the nutritional properties of fermented peanut meal (crude protein content, dry matter content, ash content, acid soluble oligopeptides content, in vitro digestibility, and content of organic acids) had a significant increase (P < 0.05 or P < 0.01) and more importantly, the content of amino acids was balanced by fermentation. In addition, fermented peanut meal possessed better antioxidant activities in the areas of reducing power, 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical scavenging activity, hydroxyl radical scavenging activity, and metal chelating activity (P < 0.05 or P < 0.01). These results implied that the nutritional and antioxidant properties of peanut meal were improved effectively by biological modification, which could be valuable in terms of nutrition and protein resources. It is great of importance to meet requirement of raw materials for husbandry in China when facing a huge lacking of feedstuff, especially for protein feed with an over 80 % import amount depending from other countries yearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PM:

Peanut meal

BHT:

2,6-Di-tert-butyl-4-methylphenol

DPPH·:

1,1-Diphenyl-2-picrylhydrazyl

SSF:

Solid-state fermentation

CFU:

Colony-forming units

PCL:

Peptide chain length

TCA:

Trichloroacetic acid

DH:

Degree of hydrolysis

DNS method:

3,5-Dinitrosalicylic acid colorimetric method

EDTA:

Ethylene diamine tetraacetic acid

EPS:

Exopolysaccharides

References

  1. Hwang, J. Y., Shyu, Y. S., Wang, Y. T., & Hsu, C. K. (2010). Antioxidative properties of protein hydrolysate from defatted peanut kernels treated with esperase. LWT- Food Science and Technology, 43, 285–290.

    Article  CAS  Google Scholar 

  2. Costa, E. F., Miller, B. R., Pesti, G. M., Bakalli, R. I., & Ewing, H. P. (2001). Studies on feeding peanut meal as a protein source for broiler chickens. Poultry Science, 80, 306–313.

    Article  CAS  Google Scholar 

  3. Chun, H. S., Kim, H. J., Ok, H. E., Hwang, J. B., & Chung, D. H. (2007). Determination of aflatoxin levels in nuts and their products consumed in South Korea. Food Chemistry, 102, 385–391.

    Article  CAS  Google Scholar 

  4. Zhang, Y., Liu, J., Lu, X., Zhang, H., Wang, L., Guo, X., et al. (2014). Isolation and identification of an antioxidant peptide prepared from fermented peanut meal using Bacillus subtilis fermentation. International Journal of Food Properties, 17, 1237–1253.

    Article  CAS  Google Scholar 

  5. Wei, M., Tang, L., Yang, Q., & Yu, L. (2012). Membrane separation and antioxidant activity research of peanut peptides. Applied Mechanics and Materials, 209, 2009–2012.

    Article  Google Scholar 

  6. Zhao, G., Liu, Y., Zhao, M., Ren, J., & Yang, B. (2011). Enzymatic hydrolysis and their effects on conformational and functional properties of peanut protein isolate. Food Chemistry, 127, 1438–1443.

    Article  CAS  Google Scholar 

  7. Su, G., Zheng, L., Cui, C., Yang, B., Ren, J., & Zhao, M. (2011). Characterization of antioxidant activity and volatile compounds of Maillard reaction products derived from different peptide fractions of peanut hydrolysate. Food Research International, 44, 3250–3258.

    Article  CAS  Google Scholar 

  8. Kane, L. E., Davis, J. P., Oakes, A. J., Dean, L. L., & Sanders, T. H. (2012). Value-added processing of peanut meal: enzymatic hydrolysis to improve functional and nutritional properties of water soluble extracts. Journal of Food Biochemistry, 36, 520–531.

    Article  CAS  Google Scholar 

  9. White, B. L., Oakes, A. J., Shi, X., Price, K. M., Lamb, M. C., Sobolev, V. S., et al. (2013). Development of a pilot-scale process to sequester aflatoxin and release bioactive peptides from highly contaminated peanut meal. LWT- Food Science and Technology, 51, 492–499.

    Article  CAS  Google Scholar 

  10. Carroll, K. K. (1991). Review of clinical studies on cholesterol-lowering response to soy protein. Journal of the American Dietetic Association, 91, 820–827.

    CAS  Google Scholar 

  11. Tchorbanov, B., Marinova, M., & Grozeva, L. (2011). Debittering of protein hydrolysates by Lactobacillus LBL-4 aminopeptidase. Enzyme Research, 2011, 1–7.

    Article  Google Scholar 

  12. Je, J. Y., Park, P. J., Jung, W. K., & Kim, S. K. (2005). Amino acid changes in fermented oyster (Crassostrea gigas) sauce with different fermentation periods. Food Chemistry, 91, 15–18.

    Article  CAS  Google Scholar 

  13. Couto, S. R., & Sanromán, M. Á. (2006). Application of solid-state fermentation to food industry—a review. Journal of Food Engineering, 76, 291–302.

    Article  CAS  Google Scholar 

  14. Chen, T. R., Su, R. Q., & Wei, Q. K. (2010). Hydrolysis of isoflavone phytoestrogens in soymilk fermented by Lactobacillus and Bifidobacterium cocultures. Journal of Food Biochemistry, 34, 1–12.

    Article  CAS  Google Scholar 

  15. Amadou, I., Le, G. W., Shi, Y. H., & Jin, S. (2011). Reducing, radical scavenging, and chelation properties of fermented soy protein meal hydrolysate by Lactobacillus plantarum LP6. International Journal of Food Properties, 14, 654–665.

    Article  CAS  Google Scholar 

  16. Meissner, L., Kauffmann, K., Wengeler, T., Mitsunaga, H., Fukusaki, E., & Buchs, J. (2015). Influence of nitrogen source and pH value on undesired poly(gamma-glutamic acid) formation of a protease producing Bacillus licheniformis strain. Journal of Industrial Microbiology & Biotechnology, 42, 1203–1215.

    Article  CAS  Google Scholar 

  17. Jang, A., & Lee, M. (2005). Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Science, 69, 653–661.

    Article  CAS  Google Scholar 

  18. Adler-Nissen, J. (1986). Enzymic hydrolysis of food proteins. London: Elsevier Applied Science Publishers.

    Google Scholar 

  19. Pandey, V. N., & Srivastava, A. K. (1996). Multiple use of aquatic green biomass for food/feed protein concentrate, bioenergy and microbial fermentation products. Hydrobiologia, 340, 313–316.

    Article  CAS  Google Scholar 

  20. Yang, J. H., Maub, J. L., Kob, P. T., & Huang, L. C. (2000). Antioxidant properties of fermented soybean broth. Food Chemistry, 71, 249–254.

    Article  CAS  Google Scholar 

  21. Xiao, Y., Wang, L., Rui, X., Li, W., Chen, X., Jiang, M., et al. (2015). Enhancement of the antioxidant capacity of soy whey by fermentation with Lactobacillus plantarum B1-6. Journal of Functional Foods, 12, 33–44.

    Article  CAS  Google Scholar 

  22. Zheng, L., Ren, J., Su, G., Yang, B., & Zhao, M. (2013). Comparison of in vitro digestion characteristics and antioxidant activity of hot- and cold-pressed peanut meals. Food Chemistry, 141, 4246–4252.

    Article  CAS  Google Scholar 

  23. Amadou, I., Le, G. W., Shi, Y. H., Gbadamosi, O. S., Kamara, M. T., & Jin, S. U. N. (2011). Optimized Lactobacillus plantarum Lp6 solid-state fermentation and proteolytic hydrolysis improve some nutritional attributes of soybean protein meal. Journal of Food Biochemistry, 35, 1686–1694.

    Article  CAS  Google Scholar 

  24. Wang, N. F., Yan, Z., Li, C. Y., Jiang, N., & Liu, H. J. (2011). Antioxidant activity of peanut flour fermented with lactic acid bacteria. Journal of Food Biochemistry, 35, 1514–1521.

    Article  CAS  Google Scholar 

  25. Fan, Y., Zhao, L., Ma, Q., Li, X., Shi, H., Zhou, T., et al. (2013). Effects of Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed moldy peanut meal naturally contaminated with aflatoxins. Food and Chemical Toxicology, 59, 748–753.

    Article  CAS  Google Scholar 

  26. Byun, H. G., & Kim, S. K. (2001). Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochemistry, 36, 1155–1162.

    Article  CAS  Google Scholar 

  27. Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides, 31, 1949–1956.

    Article  CAS  Google Scholar 

  28. Guo, H., Kouzuma, Y., & Yonekura, M. (2009). Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chemistry, 113, 238–245.

    Article  CAS  Google Scholar 

  29. Weng, X. Y., & Sun, J. Y. (2006). Biodegradation of free gossypol by a new strain of Candida tropicalis under solid state fermentation: effects of fermentation parameters. Process Biochemistry, 41, 1663–1668.

    Article  CAS  Google Scholar 

  30. Balandrán-Quintana, R. R., Mercado-Ruiz, J. N., & Mendoza-Wilson, A. M. (2015). Wheat bran proteins: a review of their uses and potential. Food Reviews International, 31, 279–293.

    Article  Google Scholar 

  31. Aiyer, P. V. D. (2004). Effect of C:N ratio on alpha amylase production by Bacillus licheniformis SPT 27. African Journal of Biotechnology, 3, 519–522.

    Article  CAS  Google Scholar 

  32. Liu, X. H., Ye, J. D., Wang, K., Kong, J. H., Yang, W., & Zhou, L. (2012). Partial replacement of fish meal with peanut meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture Research, 43, 745–755.

    Article  CAS  Google Scholar 

  33. Lim, S. J., & Lee, K. J. (2011). A microbial fermentation of soybean and cottonseed meal increases antioxidant activity and gossypol detoxification in diets for Nile tilapia, Oreochromis niloticus. Journal of the World Aquaculture Society, 42, 494–503.

    Article  Google Scholar 

  34. Wang, Y., Liu, X. T., Wang, H. L., Li, D. F., Piao, X. S., & Lu, W. Q. (2014). Optimization of processing conditions for solid-state fermented soybean meal and its effects on growth performance and nutrient digestibility of weanling pigs. Livestock Science, 170, 91–99.

    Article  Google Scholar 

  35. Kwak, H., Austic, R. E., & Dieter, R. R. (1999). Influence of dietary arginine concentration onlymphoid organ growth in chickens. Poultry Science, 78, 1536–1541.

    Article  CAS  Google Scholar 

  36. You, L., Zhao, M., Regenstein, J. M., & Ren, J. (2011). In vitro antioxidant activity and in vivo anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion. Food Chemistry, 124, 188–194.

    Article  CAS  Google Scholar 

  37. Zheng, L., Su, G., Ren, J., Gu, L., You, L., & Zhao, M. (2012). Isolation and characterization of an oxygen radical absorbance activity peptide from defatted peanut meal hydrolysate and its antioxidant properties. Journal of Agricultural and Food Chemistry, 60, 5431–5437.

    Article  CAS  Google Scholar 

  38. Phengnuam, T., & Suntornsuk, W. (2013). Detoxification and anti-nutrients reduction of Jatropha curcas seed cake by Bacillus fermentation. Journal of Bioscience and Bioengineering, 115, 168–172.

    Article  CAS  Google Scholar 

  39. Veerabhadrappa, M. B., Shivakumar, S. B., & Devappa, S. (2014). Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98. Journal of Bioscience and Bioengineering, 117, 208–214.

    Article  CAS  Google Scholar 

  40. Wang, J. P., Yoo, J. S., Lee, J. H., Zhou, T. X., Jang, H. D., Kim, H. J., et al. (2009). Effects of phenyllactic acid on production performance, egg quality parameters, and blood characteristics in laying hens. Journal of Applied Poultry Research, 18, 203–209.

    Article  CAS  Google Scholar 

  41. Garrido, M. N., Skjervheim, M., Oppegaard, H., & Sorum, H. (2004). Acidified litter benefits the intestinal flora balance of broiler chickens. Applied and Environmental Microbiology, 70, 5208–5213.

    Article  CAS  Google Scholar 

  42. Świątkiewicz, S., Koreleski, J., & Arczewska, A. (2010). Laying performance and eggshell quality in laying hens fed diets supplemented with prebiotics and organic acids. Journal of Animal Science, 55, 294–306.

    Google Scholar 

  43. Wang, L. J., Li, D., Zou, L., Dong Chen, X., Cheng, Y. Q., Yamaki, K., et al. (2007). Antioxidative activity of Douchi (a Chinese traditional salt-fermented soybean food) extracts during its processing. International Journal of Food Properties, 10, 385–396.

    Article  CAS  Google Scholar 

  44. Kwak, C. S., Lee, M. S., & Park, S. C. (2007). Higher antioxidant properties of Chungkookjang, a fermented soybean paste, may be due to increased aglycone and malonylglycoside isoflavone during fermentation. Nutrition Research, 27, 719–727.

    Article  CAS  Google Scholar 

  45. Lee, Y. L., Yang, J. H., & Mau, J. L. (2008). Antioxidant properties of water extracts from Monascus fermented soybeans. Food Chemistry, 106, 1128–1137.

    Article  CAS  Google Scholar 

  46. Chandrasekara, A., & Shahidi, F. (2012). Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. Journal of Functional Foods, 4, 226–237.

    Article  CAS  Google Scholar 

  47. Prasad, K. N., Chew, L. Y., Khoo, H. E., Kong, K. W., Azlan, A., & Ismail, A. (2010). Antioxidant capacities of peel, pulp, and seed fractions of Canarium odontophyllum Miq. Fruit. Journal of Biomedicine and Biotechnology, 2010, 871379.

    Article  Google Scholar 

  48. Chung, Y. C., Chang, C. T., Chao, W. W., Lin, C. F., & Chou, S. T. (2002). Antioxidative activity and safety of the 50 % ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. Journal of Agricultural and Food Chemistry, 50, 2454–2458.

    Article  CAS  Google Scholar 

  49. Zhu, Y. P., Fan, J. F., Cheng, Y. Q., & Li, L. T. (2008). Improvement of the antioxidant activity of Chinese traditional fermented okara (Meitauza) using Bacillus subtilis B2. Food Control, 19, 654–661.

    Article  CAS  Google Scholar 

  50. Du, X., Mu, H., Zhou, S., Zhang, Y., & Zhu, X. (2013). Chemical analysis and antioxidant activity of polysaccharides extracted from Inonotus obliquus sclerotia. International Journal of Biological Macromolecules, 62, 691–696.

    Article  CAS  Google Scholar 

  51. Fang, Y., Liu, S., Lu, M., Jiao, Y., & Wang, S. (2013). A novel method for promoting antioxidant exopolysaccharidess production of Bacillus licheniformis. Carbohydrate Polymers, 92, 1172–1176.

    Article  CAS  Google Scholar 

  52. Shen, W. Y., Fu, L. L., Li, W. F., & Zhu, Y. R. (2010). Effect of dietary supplementation with Bacillus subtilis on the growth, performance, immune response and antioxidant activities of the shrimp (Litopenaeus vannamei). Aquaculture Research, 41, 1691–1698.

    Article  CAS  Google Scholar 

  53. Teng, D., Gao, M. Y., Yang, Y. L., Liu, B., Tian, Z. G., & Wang, J. H. (2012). Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae. Biocatalysis and Agricultural Biotechnology, 1, 32–38.

Download references

Acknowledgments

Supporting funds included the Project of the National Support Program for Science and Technology in China (Nos. 2013BAD10B02 and 2011BAD26B02), the National Natural Science Foundation of China (Nos. 31372346 and 31302004), the AMP Direction of National Innovation Program of Agricultural Science and Technology in CAAS (CAAS-ASTIP-2013-FRI-02), Beijing High Education Young Elite Teacher Project (YETP1833), and Fund of Technology Research and Popularize in Beijing Vocational Agric College (XY-YF-14-24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Wang.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Xinjian Yang and Da Teng are equal authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Teng, D., Wang, X. et al. Enhancement of Nutritional and Antioxidant Properties of Peanut Meal by Bio-modification with Bacillus licheniformis . Appl Biochem Biotechnol 180, 1227–1242 (2016). https://doi.org/10.1007/s12010-016-2163-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2163-z

Keywords

Navigation