Skip to main content
Log in

Enzymatic Pretreatment Coupled with the Addition of p-Hydroxyanisole Increased Levulinic Acid Production from Steam-Exploded Rice Straw Short Fiber

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Levulinic acid production, directly from lignocellulosic biomass, resulted in low yields due to the poor substrate accessibility and occurrence of side reactions. The effects of reaction conditions, enzymatic pretreatment, and inhibitor addition on the conversion of steam-exploded rice straw (SERS) short fiber to levulinic acid catalyzed by solid superacid were investigated systematically. The results indicated that the optimal reaction conditions were temperature, time, and solid superacid concentration combinations of 200 °C, 15 min, and 7.5 %. Enzymatic pretreatment improved the substrate accessibility to solid superacid catalyst, and p-hydroxyanisole inhibitor reduced the side reactions during reaction processes, which helped to increase levulinic acid yield. The levulinic acid yield reached 25.2 % under the optimal conditions, which was 61.5 % higher than that without enzymatic pretreatment and inhibitor addition. Therefore, enzymatic pretreatment coupled with the addition of p-hydroxyanisole increased levulinic acid production effectively, which contributed to the value-added utilization of lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen, H. Z., & Li, G. H. (2013). An industrial level system with nonisothermal simultaneous solid state saccharification, fermentation and separation for ethanol production. Biochemical Engineering Journal, 74, 121–126.

    Article  CAS  Google Scholar 

  2. Rackemann, D. W., & Doherty, W. O. S. (2011). The conversion of lignocellulosics to levulinic acid. Biofpr, 5, 198–214.

    CAS  Google Scholar 

  3. Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38, 522–550.

    Article  CAS  Google Scholar 

  4. Wang, N., & Chen, H. Z. (2013). Manufacture of dissolving pulps from cornstalk by novel method coupling steam explosion and mechanical carding fractionation. Bioresource Technology, 139, 59–65.

    Article  CAS  Google Scholar 

  5. Troy, R., & Zhang, C. H. (2012). Two-stage acid-catalyzed conversion of carbohydrates into levulinic acid. Industrial and Engineering Chemistry Research, 51, 3265–3270.

    Article  Google Scholar 

  6. Weingarten, R., Jr Conner, W. C., & Huber, G. W. (2012). Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy and Environmental Science, 5, 7559–7574.

    Article  CAS  Google Scholar 

  7. Vishnu, M., & Rao, M. (2012). Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion, 38, 522–550.

    Article  Google Scholar 

  8. Yan, L., Yang, N., Pang, H., & Liao, B. (2008). Production of levulinic acid from bagasse and paddy straw by liquefaction in the presence of hydrochloride acid. Clean-Soil, Air, Water, 36, 158–163.

    Article  CAS  Google Scholar 

  9. Yang, Z. G., Kang, H. Y., Guo, Y. F., Zhuang, G. Q., Bai, Z. H., Zhang, H. X., Feng, C. X., & Dong, Y. P. (2009). Dilute-acid conversion of cotton straw to sugars and levulinic acid via 2-stage hydrolysis. Industrial Crops and Products, 46, 205–209.

    Article  Google Scholar 

  10. Mizuho, Y., Hirokazu, K., & Atsushi, F. (2014). Catalytic transformation of cellulose into platform chemicals. Applied Catalysis B Environmental, 145, 1–9.

    Article  Google Scholar 

  11. Chen, H. Z., Yu, B., & Jin, S. Y. (2011). Production of levulinic acid from steam exploded rice straw via solid superacid S2O8 2−/ZrO2–SiO2–Sm2O3. Bioresource Technology, 102, 3568–3570.

    Article  CAS  Google Scholar 

  12. Girisuta, B., Janssen, L., & Heeres, H. (2007). Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Industrial and Engineering Chemistry Research, 46, 1696–1708.

    Article  CAS  Google Scholar 

  13. Zhao, Z. M., Wang, L., & Chen, H. Z. (2016). Physical structure changes of solid medium by steam explosion sterilization. Bioresource Technology, 203, 204–210.

    Article  CAS  Google Scholar 

  14. Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.

    Article  Google Scholar 

  15. Wu, Y. N., Guo, H. F., Cui, X. L., & Yan, P. (2008). Study on the superacid catalyst S2O8 2−/ZrO2–SiO2–Sm2O3: characterization of structure. Chemical Research and Application, 20, 1468–1471.

    CAS  Google Scholar 

  16. Liu, K., Fang, G., Ma, Y., & Zhao, Y. (2007). Study on preparation of levulinic acid by acid hydrolysis of rice straw. Biochemical and Chemical Engineering, 41, 13–16.

    Google Scholar 

  17. Fang, Q., & Hanna, M. A. (2002). Experimental studies for levulinic acid production from whole kernel grain sorghum. Bioresource Technology, 81, 187–192.

    Article  CAS  Google Scholar 

  18. Asghari, F. S., & Yoshida, H. (2006). Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Industrial and Engineering Chemistry Research, 45, 2163–2173.

    Article  CAS  Google Scholar 

  19. Sohn, J. R., Lee, S. H., & Lim, J. S. (2006). New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis. Catalysis Today, 116, 143–150.

    Article  CAS  Google Scholar 

  20. Koutinas, A. A., Wang, R. H., & Webb, C. (2007). The biochemurgist–bioconversion of agricultural raw materials for chemical production. Biofpr, 1, 24–38.

    CAS  Google Scholar 

  21. Sohn, J. R. (2004). Recent advances in solid superacids. Journal of Industrial and Engineering Chemistry, 10, 1–15.

    CAS  Google Scholar 

  22. Peters, T. A., Benes, N. E., Holmen, A., & Keurentjes, J. T. F. (2006). Comparison of commercial solid acid catalysts for the esterification of acetic acid with butanol. Applied Catalysis A: General, 297, 182–188.

    Article  CAS  Google Scholar 

  23. Chen, F., Meng, X., & Xiao, F. S. (2011). Mesoporous solid acid catalysts. Catalysis Surveys from Asia, 15, 37–48.

    Article  CAS  Google Scholar 

  24. Manzer, L. E. (2006). Biomass derivatives: a sustainable source of chemicals. ACS Symposium Series, 9, 21–25.

    Google Scholar 

  25. Minsu, K., Seung, W. K., Jin-Woo, K., Tae, H. K., & Jun, S. K. (2013). Optimization of levulinic acid production from Gelidium amansii. Renewable Energy, 54, 173–179.

    Article  Google Scholar 

  26. Daiane, B. B., Magale, K. D. R., Tiele, M. R., André, L. C., & Ayrton, F. M. (2013). Cleaner production: levulinic acid from rice husks. Journal of Cleaner Production, 47, 96–101.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National High Technology Research and Development Program (863 Program, 2012AA021302) and the Open Funding Project of the State Key Laboratory of Biochemical Engineering (No. 2013KF-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Zhang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, LT., Zhao, ZM., Yu, B. et al. Enzymatic Pretreatment Coupled with the Addition of p-Hydroxyanisole Increased Levulinic Acid Production from Steam-Exploded Rice Straw Short Fiber. Appl Biochem Biotechnol 180, 945–953 (2016). https://doi.org/10.1007/s12010-016-2144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2144-2

Keywords

Navigation