Skip to main content
Log in

Wet and Dry Forms of Bacterial Cellulose Synthetized by Different Strains of Gluconacetobacter xylinus as Carriers for Yeast Immobilization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study aimed to explore and describe the properties of bacterial cellulose (BC) membranes obtained from three different strains of Gluconacetobacter xylinus for 72, 120, and 168 h, used as a carrier support for the immobilization of Saccharomyces cerevisiae. The experiments also included the analysis of glucose consumption and alcohol production during the fermentation process displayed by yeasts immobilized on the BC surface. The results of the present study demonstrate that the number of immobilized yeast cells is dependent on the type of cellulose-synthesizing strain, cellulose form, and duration of its synthesis. The BC in the form of wet membranes obtained after 3 days of synthesis displayed the most favorable properties as a carrier for yeast immobilization. The immobilization of yeast cells on BC, regardless of its form, increased the amount of the produced alcohol as compared to free cells. The yeast cells immobilized in BC were able to multiply on its surface during the fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., & Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 21(4), 377–397.

    Article  CAS  Google Scholar 

  2. Ivanova, V., Petrova, P., & Hristov, J. (2011). Application in the ethanol fermentation of immobilized yeast cells in matrix of alginate/magnetic nanoparticles, on chitosan-magnetite microparticles and cellulose-coated magnetic nanoparticles. International Review of Chemical Engineering, 3(2), 89–299.

    Google Scholar 

  3. Verbelen, P. J., De Schutter, D. P., Delvaux, F., Verstrepen, K. J., & Delvaux, F. R. (2006). Immobilized yeast cell systems for continuous fermentation applications. Biotechnology Letters, 28(19), 1515–1525.

    Article  CAS  Google Scholar 

  4. Strehaiano, P., Ramon-Portugal, F. and Taillandier, P. 2006. Yeasts as biocatalysts. In: Querol, A., Fleet, G. (Eds) Yeasts in food and beverages, pp. 243–284.

  5. Yao, W., Wu, X., Zhu, J., Sun, B., Zhang, Y. Y., & Miller, C. (2011). Bacterial cellulose membrane—a new support carrier for yeast immobilization for ethanol fermentation. Process Biochemistry, 46(10), 2054–2058.

    Article  CAS  Google Scholar 

  6. Chandel, A. K., Narasu, M. L., Chandrasekhar, G., Manikyam, A., & Rao, L. V. (2009). Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae. Bioresource Technolology, 100(8), 2404–2410.

    Article  CAS  Google Scholar 

  7. Nguyen, D. N., Ton, N. M. N., & Le, V. V. M. (2009). Optimization of Saccharomyces cerevisiae immobilization in bacterial cellulose by ‘adsorption-incubation’ method. International Food Research Journal, 16, 59–64.

    CAS  Google Scholar 

  8. Czaja, W., Krystynowicz, A., Bielecki, S., & Brown, R. M., Jr. (2006). Microbial cellulose—the natural power to heal wounds. Biomaterials, 27(2), 145–151.

    Article  CAS  Google Scholar 

  9. Ruka, D. R., Simon, G. P., & Dean, K. M. (2012). Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydrate Polymers, 89(2), 613–622.

    Article  CAS  Google Scholar 

  10. Wu, S.-C., & Lia, J.-K. (2008). Application of bacterial cellulose pellets in enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic, 54(3–4), 103–108.

    Article  CAS  Google Scholar 

  11. Ton, N. M. N., Nguyen, M. D., Pham, T. T. H., & Le, V. V. M. (2010). Influence of initial pH and sulfur dioxide content in must on wine fermentation by immobilized yeast in bacterial cellulose. International Food Research Journal, 17, 743–749.

    CAS  Google Scholar 

  12. Keshk, S. (2014). Bacterial cellulose production and its industrial applications. Journal Bioprocessing Biotechniques, 4(2), 1360–1401.

    Article  Google Scholar 

  13. Ton, N. M. N., & Le, V. V. M. (2011). Application of immobilized yeast in bacterial cellulose to the repeated batch fermentation in wine-making. International Food Research Journal, 18(3), 983–987.

    CAS  Google Scholar 

  14. Hornung, M., Ludwig, M., Gerrard, A. M., & Schmauder, H.-P. (2006). Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (part 1). Engineering in Life Sciences, 6(6), 537–545.

    Article  CAS  Google Scholar 

  15. Mikkelsen, D., Flanagan, B. M., Dykes, G. A., & Gidley, M. J. (2009). Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. Journal of Applied Microbiology, 107(2), 576–583.

    Article  CAS  Google Scholar 

  16. Sheykhnazari, S., Tabarsa, T., Ashori, A., Shakeri, A., & Golalipour, M. (2011). Bacterial synthesized cellulose nanofibers: effects of growth times and culture mediums on the structural characteristics. Carbohydrate Polymers, 86(3), 1187–1191.

    Article  CAS  Google Scholar 

  17. Ciechańska, D., Struszczyk, H., & Gruzińska, K. (1998). Modification of bacterial cellulose. Fibres Textile in Eastern Europe, 4(23), 61–65.

    Google Scholar 

  18. Jonas, R., & Farah, L. F. (1998). Production and application of microbial cellulose. Polymer Degradation and Stability, 59(1–3), 101–106.

    Article  CAS  Google Scholar 

  19. Klemm, D., Schumann, D., Udhardt, U., & Marsch, S. (2001). Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Progress in Polymer Science, 26(9), 1561–1603.

    Article  CAS  Google Scholar 

  20. Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Bacterial cellulose—a masterpiece of nature’s arts. Journal of Materials Science, 35(2), 261–270.

    Article  CAS  Google Scholar 

  21. Rezaee, A., Godini, H., & Bakhtou, H. (2008). Microbial cellulose as support material for the immobilization of denitrifying bacteria. Environmental Engineering and Management Journal, 7(5), 589–594.

    CAS  Google Scholar 

  22. Hamerska-Dudra, A., Bryjak, J., & Trochimczuk, A. W. (2007). Immobilization of glucoamylase and trypsin on crosslinked thermosensitive carriers. Enzyme and Microbial Technology, 41(3), 197–204.

    Article  CAS  Google Scholar 

  23. Ul Islam, M., Khan, T., & Park, J. K. (2012). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers, 88(2), 596–603.

    Article  CAS  Google Scholar 

  24. Dahman, Y. (2009). Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. Journal of Nanoscience and Nanotechnology, 9(9), 5105–5122.

    Article  CAS  Google Scholar 

  25. Guo, J., & Catchmark, J. M. (2012). Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydrate Polymers, 87(2), 1026–1037.

    Article  CAS  Google Scholar 

  26. Tang, W., Jia, S., Jia, Y., & Yang, H. (2010). The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World Journal Microbiology and Biotechnology, 26(1), 125–131.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Centre for Research and Development in Poland (Grant No. LIDER/011/221/L-5/13/NCBR/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Fijałkowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Żywicka, A., Peitler, D., Rakoczy, R. et al. Wet and Dry Forms of Bacterial Cellulose Synthetized by Different Strains of Gluconacetobacter xylinus as Carriers for Yeast Immobilization. Appl Biochem Biotechnol 180, 805–816 (2016). https://doi.org/10.1007/s12010-016-2134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2134-4

Keywords

Navigation