Skip to main content
Log in

A Chimeric LysK-Lysostaphin Fusion Enzyme Lysing Staphylococcus aureus Cells: a Study of Both Kinetics of Inactivation and Specifics of Interaction with Anionic Polymers

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A staphylolytic fusion protein (chimeric enzyme K-L) was created, harboring three unique lytic activities composed of the LysK CHAP endopeptidase, and amidase domains, and the lysostaphin glycyl-glycine endopeptidase domain. To assess the potential of possible therapeutic applications, the kinetic behavior of chimeric enzyme K-L was investigated. As a protein antimicrobial, with potential antigenic properties, the biophysical effect of including chimeric enzyme K-L in anionic polymer matrices that might help reduce the immunogenicity of the enzyme was tested. Chimeric enzyme K-L reveals a high lytic activity under the following optimal (opt) conditions: pHopt 6.0–10.0, topt 20–30 °C, NaClopt 400–800 mM. At the working temperature of 37 °C, chimeric enzyme K-L is inactivated by a monomolecular mechanism and possesses a high half-inactivation time of 12.7 ± 3.0 h. At storage temperatures of 22 and 4 °C, a complex mechanism (combination of monomolecular and bimolecular mechanisms) is involved in the chimeric enzyme K-L inactivation. The optimal storage conditions under which the enzyme retains 100 % activity after 140 days of incubation (4 °C, the enzyme concentration of 0.8 mg/mL, pH 6.0 or 7.5) were established. Chimeric enzyme K-L is included in complexes with block-copolymers of poly-l-glutamic acid and polyethylene glycol, while the enzyme activity and stability are retained, thus suggesting methods to improve the application of this fusion as an effective antimicrobial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nelson, D. C., Schmelcher, M., Rodriguez-Rubio, L., Klumpp, J., Pritchard, D. G., Dong, S., & Donovan, D. M. (2012). Endolysins as antimicrobials. Advances in Virus Research, 83, 299–365.

    Article  CAS  Google Scholar 

  2. Schmelcher, M., Donovan, D. M., & Loessner, M. J. (2012). Bacteriophage endolysins as novel antimicrobials. Future Microbiology, 7(10), 1147–1171.

    Article  CAS  Google Scholar 

  3. Yang, H., Yu, J., & Wei, H. (2014). Engineered bacteriophage lysins as novel anti-infectives. Frontiers in Microbiology, 5, 542.

    Google Scholar 

  4. Becker, S. C., Foster-Frey, J., & Donovan, D. M. (2008). The phage K lytic enzyme LysK and Lysostaphin act synergistically to kill MRSA. FEMS Microbiology Letters, 187(2), 185–191.

    Article  Google Scholar 

  5. Flaherty, S. O., Coffey, A., Meaney, W., Fitzgerald, G. F., & Ross, R. P. (2005). The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. Journal of Bacteriology, 187(20), 7161–7164.

    Article  Google Scholar 

  6. Horgan, M., Flynn, G., & Cooney, J. (2009). The phage lysin, LysK, can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci. Applied and Environmental Microbiology, 75(3), 872–874.

    Article  CAS  Google Scholar 

  7. Patron, R. L., Climo, M. W., Coldstein, B. P., & Archer, G. L. (1999). Lysostaphin treatment of experimental aortic valve endocarditis caused by a Staphylococcus aureus isolate with reduced susceptibility to vancomycin. Antimicrobial Agents and Chemotherapy, 43(7), 1754–1755.

    CAS  Google Scholar 

  8. Browder, H. P., Zygmunt, W. A., Young, G. R., & Tavormina, P. A. (1965). Lysostaphin: enzymatic mode of action. Biochemical and Biophysical Research Communications, 19(3), 383–389.

    Article  CAS  Google Scholar 

  9. Fischetti, V. A. (2005). Bacteriophage lytic enzymes: novel anti-infectives. Trends in Microbiology, 13(10), 491–496.

    Article  CAS  Google Scholar 

  10. Donovan, D. M., & Becker, S. C. (2010). Patent US 20100158886 A1. Beltsville: Beltsville Agricultural Research Center, USDA.

    Google Scholar 

  11. Donovan, D. M., Becker, S. C., Dong, S., Baker, J. R., Foster-Frey, J., & Pritchard, D. G. (2009). Peptidoglycan hydrolase enzyme fusions for treating multi-drug resistant pathogens. Biotech International, 21, 6–10.

    Google Scholar 

  12. Rodríguez-Rubio, L., Martínez, B., Rodríguez, A., Donovan, D., Götz, F., & García, P. (2013). The phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistance. PLoS ONE, 8(5), e64671.

    Article  Google Scholar 

  13. Severian, D., & Valentin, P. (2013). Polymeric biomaterials: medicinal and pharmaceutical applications. Volume 2. NY: Taylor and Francis Group.

    Google Scholar 

  14. Cleland, J. L., Powell, M. F., & Shire, S. J. (1993). The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Critical Reviews in Therapeutic Drug Carrier Systems, 10, 307–377.

    CAS  Google Scholar 

  15. McGowan, S., Buckle, A. M., Mitchell, M. S., Hoopes, J. T., Gallagher, D. T., Heselpoth, R. D., Shen, Y., Reboul, C. F., Law, R. H. P., Fischetti, V. A., Whisstock, J. C., & Nelson, D. C. (2012). X-ray crystal structure of the streptococcal specific phage lysin PlyC. Proceedings of the National Academy of Sciences of the United States of America, 109, 12752–12757.

    Article  CAS  Google Scholar 

  16. Miao, J., Pangule, R. C., Paskaleva, E. E., Hwang, E. E., Kane, R. S., Linhardt, R. J., & Dordick, J. S. (2011). Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials, 32(36), 9557–9567.

    Article  CAS  Google Scholar 

  17. Filatova, L. Y., Becker, S. C., Donovan, D. M., Gladilin, A. K., & Klyachko, N. L. (2010). LysK, the enzyme lysing Staphylococcus aureus cells: specific kinetic features and approaches towards stabilization. Biochimie, 92(5), 507–513.

    Article  CAS  Google Scholar 

  18. Filatova, L. Y., Donovan, D. M., Becker, S. C., Lebedev, D. N., Priyma, A. D., Koudriachova, H. V., Kabanov, A. V., & Klyachko, N. L. (2013). Physicochemical characterization of the staphylolytic LysK enzyme in complexes with polycationic polymers as a potent antimicrobial. Biochimie, 95(9), 1689–1696.

    Article  CAS  Google Scholar 

  19. Bregg, R. C. (2006). New Frontiers in Polymer Research. New York: Nova science publishers.

    Google Scholar 

  20. Kadajji, V. G., & Betageri, V. G. (2011). Water soluble polymers for pharmaceutical applications. Polymers, 3, 1972–2009.

    Article  CAS  Google Scholar 

  21. Damodaran, V. D. (2010). Protein PEGylation: an overview of chemistry and process considerations. European Pharmaceutical Review, 15(1), 18–26.

    Google Scholar 

  22. Filatova, L. Y., Donovan, D. M., Foster-Frey, J., Pugachev, V. G., Dmitrieva, N. F., Chubar, T. A., Klyachko, N. L., & Kabanov, A. V. (2015). Bacteriophage phi11 lysin: physicochemical characterization and comparison with phage phi80α lysin. Enzyme and Microbial Technology, 7374C, 51–58.

    Article  Google Scholar 

  23. Levanov, A. V., & Antipenko, E. E. (2006). Introduction to chemical kinetics (1st ed.). Moscow: Moscow University Press.

    Google Scholar 

  24. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5262), 680–685.

    Article  CAS  Google Scholar 

  25. Surovtsev, V. I., Borzenkov, V. M., Fedorov, T. V., & Smotrov, O. I. (2007). Ionogenic groups in the active site of lysostaphin. Kinetic and thermodynamic data compared with X-ray crystallographic data. Biochemistry (Moscow), 72(9), 989–993.

    Article  CAS  Google Scholar 

  26. Iversen, O.-J., & Grov, A. (1973). Studies on lysostaphin. Separation and characterization of three enzymes. European Journal of Biochemistry, 38(2), 293–300.

    Article  CAS  Google Scholar 

  27. Wang W., & Roberts, C. Aggregation of therapeutic proteins. New York: John Wiley & Sons.

  28. Nakai S., & Modler, H. Food proteins: properties and characterization. New York: John Wiley & Sons.

  29. Lavasanifar, A., Samuel, J., & Kwon, G. S. (2002). Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Advanced Drug Delivery Reviews, 54(2), 169–190.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was carried out by SkolTech N 182-MRA and was supported by BARD grant no. IS-4573-12R/58-1265-2-132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyubov Y. Filatova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatova, L.Y., Donovan, D.M., Ishnazarova, N.T. et al. A Chimeric LysK-Lysostaphin Fusion Enzyme Lysing Staphylococcus aureus Cells: a Study of Both Kinetics of Inactivation and Specifics of Interaction with Anionic Polymers. Appl Biochem Biotechnol 180, 544–557 (2016). https://doi.org/10.1007/s12010-016-2115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2115-7

Keywords

Navigation