Skip to main content

Advertisement

Log in

Optimization of Biomass and 5-Aminolevulinic Acid Production by Rhodobacter sphaeroides ATCC17023 via Response Surface Methodology

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial 5-aminolevulinic acid (ALA) produced from wastewater is considered as potential renewable energy. However, many hurdles are needed to be overcome such as the regulation of key influencing factors on ALA yield. Biomass and ALA production by Rhodobacter sphaeroides was optimized using response surface methodology. The culturing medium was artificial volatile fatty acids wastewater. Three additives were optimized, namely succinate and glycine that are precursors of ALA biosynthesis, and D-glucose that is an inhibitor of ALA dehydratase. The optimal conditions were achieved by analyzing the response surface plots. Statistical analysis showed that succinate at 8.56 mmol/L, glycine at 5.06 mmol/L, and D-glucose at 7.82 mmol/L were the best conditions. Under these optimal conditions, the highest biomass production and ALA yield of 3.55 g/L and 5.49 mg/g-biomass were achieved. Subsequent verification experiments at optimal values had the maximum biomass production of 3.41 ± 0.002 g/L and ALA yield of 5.78 ± 0.08 mg/g-biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rebeiz, C. A., Montazer-Zouhoor, A., Hopen, H. J., & Wu, S. M. (1984). Photodynamic herbicides: 1. Concept and phenomenology. Enzyme and Microbial Technology, 6, 390–396.

    Article  CAS  Google Scholar 

  2. Carmichael, W. (1992). Cyanobacteria secondary metabolites—the cyanotoxins. Journal of Applied Bacteriology, 72, 445–459.

    Article  CAS  Google Scholar 

  3. Sasaki, K., Watanabe, M., & Tanaka, T. (2002). Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology, 58, 23–29.

    Article  CAS  Google Scholar 

  4. Sasaki, K., Tanaka, T., & Nagai, S. (1998). Use of photosynthetic bacteria for the production of SCP and chemicals from organic wastes. In A. M. Martin (Ed.), Bioconversion of waste materials to industrial products (2nd ed., pp. 247–291). New York: Blackie Academic and Professional.

    Chapter  Google Scholar 

  5. Choorit, W., Saikeur, A., Chodok, P., Prasertsan, P., & Kantachote, D. (2011). Production of biomass and extracellular 5-aminolevulinic acid by Rhodopseudomonas palustris KG31 under light and dark conditions using volatile fatty acid. Journal of Bioscience and Bioengineering, 111, 658–664.

    Article  CAS  Google Scholar 

  6. Watanabe, K., Nishikawa, S., Tanaka, T., Hotta, Y. (1996) Production of 5-aminolevulinic acid. Jpn Kokai Tokkyo Kouho: To ku Kai Hei 8168391

  7. Nishikawa, S., Watanabe, K., Tanaka, T., Miyachi, N., Hotta, Y., & Murooka, Y. (1999). Rhodobacter sphaeroides mutant which accumulate 5-aminolevulinic acid under aerobic and dark conditions. Journal of Bioscience and Bioengineering, 87, 798–804.

    Article  CAS  Google Scholar 

  8. Kamiyama, H., Hotta, Y., Tanaka, T., & Nishikawa, S. (2000). Sasaki K production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacteria. Seibutu-Kougaku., 78, 48–55.

    CAS  Google Scholar 

  9. Eroglu, E., Gunduz, U., Yucel, M., & Eroglu, I. (2010). Photosynthetic bacterial growth and productivity under continuous illumination or diurnal cycles with olive mill wastewater as feedstock. International Journal of Hydrogen Energy, 35, 5293–5300.

    Article  CAS  Google Scholar 

  10. Kaewsuk, J., Thorasampan, W., Thanuttamavong, M., & Seo, G. T. (2010). Kinetic development and evaluation of membrane sequencing batch reactor (MSBR) with mixed cultures photosynthetic bacteria for dairy wastewater treatment. Journal of Environmental Management, 91, 1161–1168.

    Article  CAS  Google Scholar 

  11. Wu, P., Zhang, G., Li, J., Lu, H., & Zhao, W. (2012). Effects of Fe2+ concentration on biomass accumulation and energy metabolism in photosynthetic bacteria wastewater treatment. Bioresource Technology, 119, 55–59.

    Article  CAS  Google Scholar 

  12. Tim, H., Damien, J. B., & Jürg, K. (2014). Phototrophic bacteria for nutrient recovery from domestic wastewater. Water Research, 50, 18–26.

    Article  Google Scholar 

  13. Liu, S., Zhang, G., Li, X., & Zhang, J. (2014). Microbial production and applications of 5-aminolevulinic acid. Applied Microbiology and Biotechnology, 98, 7349–7357.

    Article  CAS  Google Scholar 

  14. Chen, D. M., Han, Y., & Gu, Z. X. (2006). Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides. Process Biochemistry, 41, 1773–1778.

    Article  CAS  Google Scholar 

  15. Kang, Z., Zhang, J., Zhou, J., Qi, Q., Du, G., & Chen, J. (2012). Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnology Advances, 30, 1533–1542.

    Article  CAS  Google Scholar 

  16. Reyes, L. H., Gomez, J. M., & Kao, K. C. (2014). Improving carotenoids production in yeast via adaptive laboratory evolution. Metabolic Engineering, 21, 26–33.

    Article  CAS  Google Scholar 

  17. Ishii, K., Hiraishi, A., Arai, T., & Kitamura, H. (1990). Light-dependent porphyrin production by suspended and immobilized cells of Rhodobacter sphaeroides. Journal of Fermentation and Bioengineering, 69, 26–32.

    Article  CAS  Google Scholar 

  18. Liu, X., Wang, L., Wang, Y., & Cai, L. (2010). D-glucose enhanced 5-aminolevulinic acid production in recombinant Escherichia coli culture. Applied Biochemistry and Biotechnology, 160, 822–830.

    Article  CAS  Google Scholar 

  19. Ano, A., Funahashi, H., Nakao, K., & Nishizawa, Y. (1999). Effect of glycine on 5-aminolevulinic acid bio synthesis in heterotrophic culture of Chlorella regularis YA-603. Journal of Bioscience and Bioengineering, 88, 57–60.

    Article  CAS  Google Scholar 

  20. Chung, S.-Y., Seo, K.-H., & Rhee, J. I. (2005). Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E. coli. Process Biochemistry, 40, 385–394.

    Article  CAS  Google Scholar 

  21. Qin, G., Lin, J., Liu, X., & Cen, P. (2006). Effects of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. Journal of Bioscience and Bioengineering, 102, 316–322.

    Article  CAS  Google Scholar 

  22. Yoo, C. G., Lee, C. W., & Kim, T. H. (2011). Optimization of two-stage fractionation process for lignocellulosic biomass using response surface methodology (RSM). Biomass and Bioenergy, 35, 4901–4909.

    Article  CAS  Google Scholar 

  23. Zi, W., Peng, J., Zhang, X., Zhang, L., & Liu, J. (2013). Optimization of waste tobacco stem expansion by microwave radiation for biomass material using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 44, 678–685.

    Article  CAS  Google Scholar 

  24. Wu, J., Yu, D., Sun, H., Zhang, Y., Zhang, W., Meng, F., & Du, X. (2015). Optimizing the extraction of anti-tumor alkaloids from the stem of Berberis amurensis by response surface methodology. Industrial Crops and Products, 69, 68–75.

    Article  CAS  Google Scholar 

  25. Saikeur, A., Choorit, W., Prasertsan, P., Kantachote, D., & Sasaki, K. (2009). Influence of precursors and inhibitor on the production of extracellular 5-aminolevulinic acid and biomass by Rhodopseudomonas palustris KG31. Bioscience, Biotechnology, and Biochemistry, 73, 987–992.

    Article  CAS  Google Scholar 

  26. Liu, S., Li, X., Zhang, G., & Zhang, J. (2015). Optimization of influencing factors on biomass accumulation and 5-aminolevulinic acid (ALA) yield in Rhodobacter sphaeroides wastewater treatment. Journal of Microbiology and Biotechnology, 25, 1920–1927.

    Article  CAS  Google Scholar 

  27. Liu, S., Zhang, G., Zhang, J., Li, X., & Li, J. (2016). Performance, 5-aminolevulinic acid (ALA) yield and microbial population dynamics in a photobioreactor system treating soybean wastewater: effect of hydraulic retention time (HRT) and organic loading rate (OLR). Bioresource Technology. doi:10.1016/j.biortech.2016.01.030.

    Google Scholar 

  28. Clesscerl, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington DC: American Public Health Association.

    Google Scholar 

  29. Oehmen, A., Lemos, P. C., Carvalho, G., Yuan, Z., Keller, J., Blackall, L. L., & Reis, M. A. M. (2007). Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Research, 41, 2271–2300.

    Article  CAS  Google Scholar 

  30. Satoh, H., Mino, T., & Matsuo, T. (1992). Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes. Water Science and Technology, 26, 933–942.

    CAS  Google Scholar 

  31. Smolders, G. J. F., Vandermeij, J., Vanloosdrecht, M. C. M., & Heijnen, J. J. (1994). Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotechnology and Bioengineering, 44, 837–848.

    Article  CAS  Google Scholar 

  32. Fu, W., Lin, J., & Cen, P. (2008). Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system. Bioresource Technology, 99, 4864–4870.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (51278489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 15.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhang, G., Li, J. et al. Optimization of Biomass and 5-Aminolevulinic Acid Production by Rhodobacter sphaeroides ATCC17023 via Response Surface Methodology. Appl Biochem Biotechnol 179, 444–458 (2016). https://doi.org/10.1007/s12010-016-2005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2005-z

Keywords

Navigation