Skip to main content
Log in

Effect of Natural Mineral on Methane Production and Process Stability During Semi-Continuous Mono-Digestion of Maize Straw

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of natural mineral on the mono-digestion of maize straw was evaluated in continuously stirred tank reactors (CSTRs) at 38 °C. Different strategies of mineral addition were studied. The organic loading rate (OLR) was varied from 0.5 to 2.5 g volatile solid (VS) L−1 d−1. A daily addition of 1 g mineral L−1 in reactor 2 (R2) diminished the methane production by about 11 % with respect to the initial phase. However, after a gradual addition of mineral, an average methane yield of 257 NmL CH4 g VS−1 was reached and the methane production was enhanced by 30 % with regard to R1. An increase in the frequency of mineral addition did not enhance the methane production. The archaeal community was more sensitive to the mineral than the bacterial population whose similarity stayed high between R1 and R2. Significant difference in methane yield was found for both reactors throughout the operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hill, J., McSweeney, C., Wright, G, A.D., Bishop-Hurley, G., Kalantar-zadeh, K. (2015). Measuring methane production from ruminants. Trends in Biotechnology. DOI: http://dx.doi.org/10.1016/j.tibtech.2015.10.004

  2. Sun, L., Müller, B., & Schnürer, A. (2013). Biogas production from wheat straw: community structure of cellulose-degrading bacteria. Energy. Sustainable. Society, 3, 15.

    Article  Google Scholar 

  3. Weiland, P. (2010). Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85, 849–860.

    Article  CAS  Google Scholar 

  4. Takashima, M., & Speece, R. E. (1989). Mineral requirements for methane fermentation. Crit. Review Environment Control, 19, 465–479.

    Article  Google Scholar 

  5. Fermoso, F. G., Collins, G., Bartacek, J., O’Flaherty, V., & Lens, P. (2008). Acidification of methanol-fed anaerobic granular sludge bioreactors by cobalt deprivation: induction and microbial community dynamics. Biotechnology and Bioengineering, 99, 49–58.

    Article  CAS  Google Scholar 

  6. Feng, X. M., Karlsson, A., Svensson, B. H., & Bertilsson, S. (2010). Impact of trace element addition on biogas production from food industrial waste—linking process to microbial communities. FEMS Microbiology Ecology, 74, 226–240.

    Article  CAS  Google Scholar 

  7. Demirel, B., & Scherer, P. (2011). Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy, 35, 992–998.

    Article  CAS  Google Scholar 

  8. Brulé, M., Bolduan, R., Seidelt, S., Schlagermann, P., & Bott, A. (2013). Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops. Environmental Technology, 34, 2047–2058.

    Article  Google Scholar 

  9. Suárez, A. G., Nielsen, K., Köhler, S., Merencio, D. O., & Reyes, I. P. (2014). Enhancement of anaerobic digestion of microcrystalline cellulose (MCC) using natural micronutrient sources. Brazilian Journal of Chemical Engineering, 43, 393–401.

    Article  Google Scholar 

  10. Nges, I. A. and Björnsson, L. (2012). High methane yields and stable operation during anaerobic digestion of nutrient-supplemented energy crop mixtures. Biomass Bioenerg, 4762–70.

  11. Lebuhn, M., Liu, F., Heuwinkel, H., & Gronauer, A. (2008). Biogas production from mono-digestion of maize silage—long-term process stability and requirements. Water Science and Technology, 58, 1645–1651.

    Article  CAS  Google Scholar 

  12. Pobeheim, H., Munka, B., Lindorfer, H., & Guebitz, G. M. (2011). Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Research, 45, 781–787.

    Article  CAS  Google Scholar 

  13. Hinken, L., Urban, X., & Haun, S. (2008). The evaluation of malnutrition in the mono-digestion of maize silage by batch tests. Water Science and Technology, 58, 1453–1462.

    Article  CAS  Google Scholar 

  14. Lehtomäki, A., Huttunen, S., & Rintala, J. A. (2007). Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resource. Conservation. and Recycle, 51, 591–609.

    Article  Google Scholar 

  15. Seppälä, M., Pyykkönen, V., Väisänen, A., & Rintala, J. (2013). Biomethane production from maize and liquid cow manure—effect of share of maize, post-methanation potential and digestate characteristics. Fuel, 107, 209–216.

    Article  Google Scholar 

  16. Bayr, S., Pakarinen, O., Korppoo, A., Liuksia, S., Väisänen, A., Kaparaju, P., & Rintala, J. (2012). Effect of additives on process stability of mesophilic anaerobic monodigestion of pig slaughterhouse waste. Bioresource Technology, 120, 106–113.

    Article  CAS  Google Scholar 

  17. Facchin, V., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F., & Bolzonella, D. (2013). Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculums origin. Biochemical Engineering Journal, 70, 71–77.

    Article  CAS  Google Scholar 

  18. Pereda, I., Irusta, R., Montalvo, S., & Del Valle, J. L. (2006). Solid mining residues from Ni extraction applied as nutrients supplier to anaerobic process. Optimal dose approach through Taguchi’s methodology. Water Sci. Technology, 54, 209–219.

    CAS  Google Scholar 

  19. APHA, AWWA, WEF. Standard methods for the examination of water and wastewater. 19th Ed. American Public Health Association/America Water Works Association/Water Environment Federation, Washington DC, 1995

  20. Tallarico, A. M., Hirasawa, J. S., & Amâncio, V. B. (2014). Development and validation of two methods to quantify volatile acids (C2-C6) by GC/FID: headspace (automatic and manual) and liquid-liquid extraction (LLE). American Journal of Analytical. Chemistry, 5, 406–414.

    Article  Google Scholar 

  21. Burchard, C. H., Groche, D., & Zerres, H. P. (2001). ATV Handbuch einfacher Messungen und Untersuchunge nauf Klarwerken (10th ed.). Munchen: Hirthammer Verlag (In German).

    Google Scholar 

  22. Griffiths, R. I., Witeley, A. S., O’Donnell, A. G., & Bailey, M. J. (2000). Rapid method for co-extraction of DNA and RNA from natural environments for analysis of ribosomal DNA and rRNA-based microbial community composition. Applied and Environmental Microbiology, 66, 5488–5491.

    Article  CAS  Google Scholar 

  23. Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., & Ri, A. (1996). Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. Journal of Bacteriology, 178, 5636–5643.

    Google Scholar 

  24. Vissers, E., Bodelier, P. L. E., Muyzer, G., & Laanbroek, H. J. (2009). A nested PCR approach for improved recovery of archaeal 16SrRNA gene fragments from fresh water samples. FEMS Microbiology Letters, 298, 193–198.

    Article  CAS  Google Scholar 

  25. Klocke, M., Mähnert, P., Mundt, K., Souidi, K., & Linke, B. (2007). Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. System Applied Microbiology, 30, 139–151.

    Article  CAS  Google Scholar 

  26. Merlino, G., Rizzi, A., Villa, F., Sorlini, C., Brambilla, M., Navarotto, P., Bertazzoni, B., Zagni, M., Araldi, F., & Daffonchio, D. (2012). Shifts of microbial community structure during anaerobic digestion of agro-industrial energetic crops and food industry byproducts. Journal of Chemical Technology and Biotechnology, 87, 1302–1311.

    Article  CAS  Google Scholar 

  27. Chandler, J. A., Jewell, W. J., Gosset, J. M., Soest, P. J., Van, B., & Robertson, J. B. (1980). Predicting methane fermentation biodegradability. Biotechnology and Bioengineering Symposium, 10, 93–107.

    CAS  Google Scholar 

  28. Fan, L. T., Gharpuray, M. M., & Lee, Y. H. (1981). Evaluation of pretreatments for enzymatic conversion of agricultural residues. Biotechnology and Bioengineering Symposium, 11, 29–45.

    CAS  Google Scholar 

  29. Gonzalez-Gil, G., Kleerebezem, R., & Lettinga, G. (1999). Effects of nickel and cobalt on kinetics of methanol conversion by methanogenic sludge as assessed by on-line CH4 monitoring. Applied and Environmental Microbiology, 65, 1789–1793.

    CAS  Google Scholar 

  30. Kuo, W. C., & Parkin, G. F. (1996). Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties. Water Research, 30, 915–922.

    Article  CAS  Google Scholar 

  31. VDI-4630. Fermentation of organic materials. Characterization of the substrate, sampling (Collection of material data, fermentation tests). Düsseldorf: Germany; 2006.

  32. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99, 4044–4064.

    Article  CAS  Google Scholar 

  33. Jiang, B. (2006). The effect of trace elements on the metabolism of methanogenic consortia. PhD Thesis, Wageningen University, Wageningen, The Netherlands.

  34. Pagés-Díaz, J., Pereda-Reyes, I., Taherzadeh, M. J., Sárvári-Horváth, I., & Lundin, M. (2014). Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: synergistic and antagonistic interactions determined in batch digestion assays. Journal of Chemical Engineering, 245, 89–98.

    Article  Google Scholar 

  35. Angelidaki, I., & Ellegaard, L. (2003). Codigestion of manure and organic wastes in centralized biogas plant. Applied Biochemistry and Biotechnology, 109, 95–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the School of Agricultural Engineering, University of Campinas, under the research project “Obtaining of a technological outline that allows bigger levels of biogas production in the anaerobic treatment of biodegradable waste by mineral addition guaranteeing the quality of the digestates as soil improvers.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. González-Suárez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Suárez, A., Pereda-Reyes, I., Pozzi, E. et al. Effect of Natural Mineral on Methane Production and Process Stability During Semi-Continuous Mono-Digestion of Maize Straw. Appl Biochem Biotechnol 178, 1522–1533 (2016). https://doi.org/10.1007/s12010-015-1965-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1965-8

Keywords

Navigation