Skip to main content
Log in

Enhancement of Cellulase and Xylanase Production Using pH-Shift and Dissolved Oxygen Control Strategy with Streptomyces griseorubens JSD-1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the production of cellulase and xylanase by Streptomyces griseorubens JSD-1 was improved by integrating the pH-shift and dissolved oxygen (DO)-constant control strategies. The pH-shift control strategy was carried out by analyzing the specific cell growth rate (μ) and specific enzyme formation rate (Q p) of S. griseorubens JSD-1. The pH was controlled at 8.0 during the first 48 h to maintain high cell growth, which then shifted to 7.5 after 48 h to improve the production of cellulase and xylanase. Using this method, the maximum activities of cellulase, xylanase, and filter paper enzyme (FPase) increased by 47.9, 29.5, and 113.6 %, respectively, compared to that obtained without pH control. On the basis of pH-shift control, the influence of DO concentrations on biomass and enzyme production was further investigated. The maximum production of cellulase, xylanase, and FPase reached 114.38 ± 0.96 U mL−1, 330.57 ± 2.54 U mL−1, and 40.11 ± 0.38 U mL−1, which were about 1.6-fold, 0.6-fold, and 3.2-fold higher than that of neutral pH without DO control conditions. These results supplied a functional approach for improving cellulase and xylanase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wei, M. G., Wang, X. Y., & Xie, G. H. (2012). Field residue of field crops and its temporal distribution among thirty-one provinces of China. Journal of China Agricultural University, 17, 32–44.

    Google Scholar 

  2. Xu, J., & Yang, Q. (2010). Isolation and characterization of rice straw degrading Streptomyces griseorubens C-5. Biodegradation, 21, 107–116.

    Article  CAS  Google Scholar 

  3. Fang, H., Zhao, C., Song, X. Y., Chen, M., Chang, Z., & Chu, J. (2013). Enhanced cellulolytic enzyme production by the synergism between Trichoderma reesei RUT-C30 and Aspergillus niger NL20 and by the addition of surfactants. Biotechnology and Bioprocess Engineering, 18, 390–398.

    Article  CAS  Google Scholar 

  4. Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18, 355–383.

    Article  CAS  Google Scholar 

  5. Geetha, K., & Gunasekaran, P. (2010). Optimization of nutrient medium containing agricultural waste for xylanase production by Bacillus pumilus B20. Biotechnology and Bioprocess Engineering, 15, 882–889.

    Article  CAS  Google Scholar 

  6. Tseng, M. J., Yap, M. N., Ratanakhanokchai, K., Kyu, K. L., & Chen, S. T. (2002). Purification and characterization of two cellulase free xylanases from an alkaliphilic Bacillus firmus. Enzyme and Microbial Technology, 30, 590–595.

    Article  CAS  Google Scholar 

  7. Pathak, P., Bhardwaj, N. K., & Singh, A. K. (2011). Optimization of chemical and enzymatic deinking of photocopier waste paper. BioResources, 6, 447–463.

    CAS  Google Scholar 

  8. Pandey, A., Soccol, C. R., & Mitchell, D. (2000). New developments in solid state fermentation: I—bioprocesses and products. Process Biochemistry, 35, 1153–1169.

    Article  CAS  Google Scholar 

  9. Thomas, L., Joseph, A., & Gottumukkala, L. D. (2014). Xylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvement. Bioresourse Technology, 158, 343–350.

    Article  CAS  Google Scholar 

  10. Polizeli, M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 67, 577–591.

    Article  CAS  Google Scholar 

  11. Prasetyo, J., Sumita, S., Okuda, N., & Park, E. Y. (2010). Response of cellulase activity in pH-controlled cultures of the filamentous fungus Acremonium cellulolyticus. Applied Biochemistry and Biotechnology, 162, 52–61.

    Article  CAS  Google Scholar 

  12. Sohail, M., Siddiqi, R., Ahmad, A., & Khan, S. A. (2009). Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnology, 25, 437–441.

    Article  CAS  Google Scholar 

  13. Pathak, P., Bhardwaj, N. K., & Singh, A. K. (2014). Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling. Applied Biochemistry and Biotechnology, 172, 3776–3797.

    Article  CAS  Google Scholar 

  14. Ncube, T., Howard, R. L., Abotsi, E. K., van Rensburg, E. L. J., & Ncube, I. (2012). Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Industrial Crops and Products, 37, 118–123.

    Article  CAS  Google Scholar 

  15. Singhania, R. R., Sukumaran, R. K., Patel, A. K., Larroche, C., & Pandey, A. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 46, 541–549.

    Article  CAS  Google Scholar 

  16. Da-Vinha, F. N. M., Gravina, O. M. P., Franco, M. N., Macrae, A., & Coelho, R. R. R. (2011). Cellulase production by Streptomyces viridobrunneus SCPE-09 using lignocellulosic biomass as inducer substrate. Applied Biochemistry and Biotechnology, 164, 256–267.

    Article  Google Scholar 

  17. Saritha, M., Arora, A., Singh, S., & Nain, L. (2013). Streptomyces griseorubens mediated delignification of paddy straw for improved enzymatic saccharification yields. Bioresourse Technology, 135, 12–17.

    Article  CAS  Google Scholar 

  18. De-Lima, A. L. G., do Nascimento, R. P., da Silva, B. E. P., & Coelho, R. R. R. (2005). Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries. Enzyme and Microbial Technology, 37, 272–277.

    Article  Google Scholar 

  19. Gao, W., Kim, H. W., Li, J., & Lee, J. W. (2013). Enhanced production of cellobiase by a marine bacterium, Cellulophga lytica LBH-14 in pilot-scaled bioreactor using rice bran. Journal of Life Sciences, 23, 542–553.

    Google Scholar 

  20. Ahamed, A., & Vermette, P. (2010). Effect of mechanical agitation on the production of cellulases by Trichoderma reesei RUT-C30 in a draft-tube airlift bioreactor. Biochemical Engineering Journal, 49, 379–387.

    Article  CAS  Google Scholar 

  21. Patel, N., Choy, V., Malouf, P., & Thibault, J. (2009). Growth of Trichoderma reesei RUT C-30 in stirred tank and reciprocating plate bioreactors. Process Biochemistry, 44, 1164–1171.

    Article  CAS  Google Scholar 

  22. Ghoshal, G., Banerjeeb, U. C., & Shivhare, U. S. (2014). Xylanase production by Penicillium citrinum in laboratory-scale stirred tank reactor. Chemical and Biochemical Engineering Quarterly, 28, 399–408.

    Article  CAS  Google Scholar 

  23. Shahriarinour, M., Wahab, M. N. A., Ariff, A. B., Mustafa, S., & Rosfarizan, M. (2011). Kinetics of cellulase production by Aspergillus terreus at various levels of dissolved oxygen tension in a stirred tank bioreactor. BioResources, 6, 4909–4921.

    CAS  Google Scholar 

  24. Umikalsom, M. S., Ariff, A. B., Hassan, M. A., & Karim, M. I. A. (1998). Kinetics of cellulase production by Chaetomium globosum at different levels of dissolved oxygen tension using oil palm empty fruit bunch fibre as substrate. World Journal of Microbiology Biotechnology, 14, 491–498.

    Article  CAS  Google Scholar 

  25. Feng, H. W., Sun, Y. J., Zhi, Y. E., Mao, L., Luo, Y. Q., Wei, X., & Zhou, P. (2015). Lignocellulose degradation by the isolate of Streptomyces griseorubens JSD-1. Functional & Integrative Genomics, 15, 163–173.

    Article  CAS  Google Scholar 

  26. Feng, H. W., Zhi, Y. E., Sun, Y. J., Wei, X., Luo, Y. Q., & Zhou, P. (2014). Draft genome sequence of a novel Streptomyces griseorubens strain, JSD-1, active in carbon and nitrogen recycling. Genome Announcements, 2, e00650–e00614.

    Google Scholar 

  27. Feng, H. W., Zhou, P., Mao, L., Shi, W. W., & Zhi, Y. E. (2013). Screening of microbes with high quality of cellulose-decomposing enzyme and optimization of the conditions for cellulase production. Journal of Shanghai Jiaotong University (Agricultural Science), 31, 24–29.

    Google Scholar 

  28. Feng, H. W., Zhi, Y. E., Shi, W. W., Mao, L., & Zhou, P. (2013). Isolation, identification and characterization of a straw degrading Streptomyces griseorubens JSD-1. African Journal of Microbiology Research, 7, 2730–2735.

    Google Scholar 

  29. Luo, Y. Q., Zhang, D., Feng, H. W., Chai, X. T., Zhi, Y. E., & Zhou, P. (2015). Optimization of conditions for CMCase activity of cellulase detected with DNS method for Streptomyces griseorubens (JSD-1). Science and Technology of Food Industry, 36, 156–162.

    Google Scholar 

  30. Miller, L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  31. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Chemistry, 72, 248–254.

    CAS  Google Scholar 

  32. Bandyopadhyay, B., & Humphrey, A. E. (1967). Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation system. Biotechnology and Bioengineering, 9, 533–544.

    Article  CAS  Google Scholar 

  33. Badino, J. A. C., Facciotti, M. C. R., & Schmidell, W. (2000). Improving k La determination in fungal fermentation, taking into account electrode response time. Journal of Chemical Technology and Biotechnology, 75, 469–474.

    Article  CAS  Google Scholar 

  34. Yusuf, C., & Ulises, J. J. H. (2002). Oxygen transfer and mixing in mechanically agitated airlift bioreactors. Biochemical Engineering Journal, 10, 143–153.

    Article  Google Scholar 

  35. Ahmed, S., Imdad, S. S., & Jamil, A. (2012). Comparative study for the kinetics of extracellular xylanases from Trichoderma harzianum and Chaetomium thermophilum. Electronic Journal of Biotechnology, 15, 3–8.

    Article  Google Scholar 

  36. Lejeune, R., & Baron, G. V. (1995). Effect of agitation on growth and enzyme production of Trichoderma reesei in batch fermentation. Applied Microbiology and Biotechnology, 43, 249–258.

    Article  CAS  Google Scholar 

  37. Lee, C., Lee, S., Jung, K., Katoh, S., & Lee, E. (2003). High dissolved oxygen tension enhances heterologous protein expression by recombinant Pichia pastoris. Process Biochemistry, 38, 1147–1154.

    Article  CAS  Google Scholar 

  38. Lund, B., Baird-Parker, T., & Gould, G. (2000). The microbiological safety and quality of food. Springer US.

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (2012AA101405) and the National Natural Science Foundation of China (31201682).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Luo, Y., Chu, S. et al. Enhancement of Cellulase and Xylanase Production Using pH-Shift and Dissolved Oxygen Control Strategy with Streptomyces griseorubens JSD-1. Appl Biochem Biotechnol 178, 338–352 (2016). https://doi.org/10.1007/s12010-015-1875-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1875-9

Keywords

Navigation