Skip to main content
Log in

Response Surface Optimization for Decaffeination and Theophylline Production by Fusarium solani

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Coffee processing industries generate caffeine-containing waste that needs to be treated and decaffeinated before being disposed. Five fungal isolates obtained on caffeine-containing mineral media were tested for their ability to utilize caffeine at high concentrations. An isolate identified as Fusarium solani could utilize caffeine as a sole source of carbon and nitrogen up to 5 g/l and could degrade it to an extent of 30–53 % in 120 h. Sucrose that was added as an auxiliary substrate (5 g/l) enhanced the biodecaffeination of caffeine to 88 % in 96 h. The addition of co- substrate (sucrose) not only resulted in higher biodecaffeination efficiency, but also reduced the incubation period from the initial 120 to 96 h. Theophylline and 3-methyl xanthine were obtained as the major metabolites of decaffeination at 96 and 120 h, respectively. Response surface methodology used to optimize the process parameters for maximum biodecaffeination as well as theophylline production showed that a pH of 5.8, temperature of 24 °C and inoculum size of 4.8 × 105 spores/ml have resulted in a complete biodecaffeination of caffeine as well as the production of theophylline with a yield of 33 % (w/w). Results thus show that a viable and sustainable process can be developed for the detoxification of caffeine along with the recovery of theophylline, a commercially important chemical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Suzuki, T., & Waller, G. R. (1998). Metabolism and analysis of caffeine and other methylxanthines in coffee, tea cola, guarana and cacao. In Modern methods of plant analysis (Netu series, HF Linskens and JF Jackson, ed.). Berlin, Heidelberg, Springer-Verlag, 8, 184–210.

    Google Scholar 

  2. Weigel, S., Berger, U., Jensen, E., Kallenborn, R., Thoresen, H., & H¨uhnerfuss, H. (2004). Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromso/Norway with emphasis on ibuprofen and its metabolites. Chemosphere, 56, 583–592.

    Article  CAS  Google Scholar 

  3. Bressani, R. (1987). Anti-physiological factors in coffee pulp. In J. E. Brahan, & R. Bressani (Eds.), Composition, technology and utilization (pp. 83–88). Guatemala City: Institute of Nutrition of Central America and Panama.

    Google Scholar 

  4. Buerge, I. J., Poiger, T., Muller, M. D., & Buser, H. R. (2003). Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environmental Science & Technology, 37, 691–700.

    Article  CAS  Google Scholar 

  5. Batish, D. R., Singh, H. P., Kaur, M., Kohli, R. K., & Yadav, S. S. (2008). Caffeine affects adventitious rooting and causes biochemical changes in the hypocotyl cuttings of mung bean (Phaseolus aureus Roxb.). Acta Physiologiae Plantarum, 30, 401–405.

    Article  CAS  Google Scholar 

  6. El-Mched, F., Olama, Z., & Holail, H. (2013). Optimization of the environmental and physiological factors affecting microbial caffeine degradation and its application in caffeinated products. Journal of Basic Microbiology, 1, 17–27.

    Google Scholar 

  7. Glassmeyer, S. T., Furlong, E. T., Kolpin, D. W., Cahill, J. D., Zaugg, S. D., Werner, S. L., Meyer, M. T., & Kryak, D. D. (2005). Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environmental Science & Technology, 39, 5157–5169.

    Article  CAS  Google Scholar 

  8. Roussos, S., Aquiáhuatl, M. A., Trejo-Hernández, M. R., Perraud, I. G., Favela, E., Ramakrishna, M., Raimbault, M., & Viniegragonzález, G. (1995). Biotechnological management of coffee pulp-isolation, screening, characterization, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk. Applied Microbiology and Biotechnology, 42, 756–762.

    Article  CAS  Google Scholar 

  9. Smith, R. M. (1999). Supercritical fluids in separation science—the dreams, the reality and the future. Journal of Chromatography, 856, 83–115.

    Article  CAS  Google Scholar 

  10. Udayasankar, K., Manohar, B., & Chokkalingam, A. (1986). A note on supercritical carbon dioxide decaffeination of coffee. Journal of Food & Science Technology, 23, 326–328.

  11. Dixon, D., & Johnston, J. (1997). Supercritical fluids (pp. 1544–1569). John Wiley, New York: Encyclopedia of Separation Technology.

    Google Scholar 

  12. Gummadi, S. N., & Santhosh, D. (2010). Kinetics of growth and caffeine demethylase production of Pseudomonas sp. in bioreactor. Journal of Industrial Microbiology and Biotechnology, 37, 901–908.

    Article  CAS  Google Scholar 

  13. Mazzafera, P. (2002). Degradation of caffeine by microorganisms and potential use of decaffeinated coffee husk and pulp in animal feeding. Scientia Agricola, 59, 815–821.

    Article  CAS  Google Scholar 

  14. Gummadi, S. N., Bhavya, B., & Ashok, N. (2012). Physiology, biochemistry and possible applications of microbial caffeine degradation. Applied Microbiology, 93, 545–554.

    CAS  Google Scholar 

  15. Ahmad, S. A., Ibrahim, S., Shukor, M. Y., Johari, W. L. W., Rahman, N. A. A., & Syed, N. A. (2015). Biodegradation kinetics of caffeine by Leifsonia sp. strain siu. Journal of Chemical and Pharmaceutical Sciences, 8, 312–316.

    Google Scholar 

  16. Sarath Babu, V. R., Patra, S., Thakur, M. S., Karanth, N. G., & Varadaraj, M. C. (2005). Degradation of caffeine by Pseudomonas alcaligenes CFR 1708. Enzyme and Microbial Technology, 37, 617–624.

    Article  Google Scholar 

  17. Ibrahim, S., Shukor, M. Y., Syed, M. A., Johari, W. L. W., & Ahmad, S. A. (2015). Characterization and growth kinetics studies of caffeine-degrading bacterium Leifsonia sp. strain SIU. Annals of Microbiology. doi:10.1007/s13213-015-1108-z.

    Google Scholar 

  18. Lakshmi, V., & Nilanjana, D. (2009). Caffeine degradation by yeasts isolated from caffeine contaminated samples. International Journal of Security and Networks, 1, 47–52.

    Google Scholar 

  19. Vibha, N., Pooja, V. P., Ashwini, P., Supriya, P., Sushma, Y. D., & Vaman, R. C. (2013). A comparative study of caffeine degradation by four different fungi. Journal of Bioremediation, 17, 79–85.

    Article  Google Scholar 

  20. Artz, J. S., & Dinner, M. J. (2001). Treatment of cellulite deformities of the thighs with topical aminophylline gel. The Canadian Journal of Plastic Surgery, 119, 1661–1670.

    Google Scholar 

  21. Lentini, A., Tabolacci, C., Mattioli, P., Provenzano, B., & Beninati, S. (2010). Antitumor activity of theophylline in combination with Paclitaxel: a preclinical study on melanoma experimental lung metastasis. Cancer Biotherapy and Radiopharmaceuticals, 25, 497–503.

    Article  CAS  Google Scholar 

  22. Richard, L. Z., Donald, A. M., Donna, R., Nina, C., Amanda, E., Kathleen, R., & Katharine, K. (2001). Salmeterol plus theophylline combination therapy in the treatment of COPD. Chest, 119, 1661–1670.

    Article  Google Scholar 

  23. Gummadi, S. N., Swati, S. D., & Santhosh, D. (2006). Optimization of production of caffeine demethylase by Pseudomonas sp. in a bioreactor. Journal of Industrial Microbiology and Biotechnology, 36, 713–720.

    Article  Google Scholar 

  24. Patra, S., Thakur, M.S., & Karanth N.G. (2010). A process for microbial biotransformation of caffeine to theophylline. Ref.No.329/DEL/2006 A.

  25. Al-Araji, L. I. Y., Abd. Rahman, R. N. Z. R., Basri, M., & Salleh, A. B. (2007). Optimisation of rhamnolipids produced by Pseudomonas aeruginosa 181 using Response Surface Modeling. Annals of Microbiology, 57, 571–575.

    Article  CAS  Google Scholar 

  26. Huck, C. W., Guggenbichler, W., & Bonn, G. K. (2005). Analysis of caffeine, theobromine and theophylline in coffee by near infrared spectroscopy (NIRS) compared to high-performance liquid chromatography (HPLC) coupled to mass spectrometry. Analytica Chimica Acta, 538, 195–203.

    Article  CAS  Google Scholar 

  27. Suzanne, N.S. (2010). Phenol-Sulfuric Acid Method for Total Carbohydrates, Food Analysis Laboratory Manual, Food Science Texts Series, Springer Science+, Business media, 47-53pp.

    Google Scholar 

  28. Lakshman, K., Rastogi, N. K., & Shamala, T. R. (2004). Simultaneous and comparative assessment of parent and mutant strain of Rhizobium meliloti for nutrient limitation and enhanced polyhydroxyalkanoate (PHA) production using optimization studies. Process Biochemistry, 39, 1977–1983.

    Article  CAS  Google Scholar 

  29. Triveni, R., Shamala, T. R., & Rastogi, N. K. (2001). Optimized production and utilization of exopolysaccharide from Agrobacterium radiobacter. Process Biochemistry, 36, 787–795.

    Article  CAS  Google Scholar 

  30. Sharma, M., Rastogi, N. K., & Lokesh, B. R. (2009). Synthesis of structured lipid with balanced omega-3: omega-6 ratio by lipase-catalyzed acidolysis reaction: optimization of reaction using response methodology. Process Biochemistry, 44, 1284–1288.

    Article  CAS  Google Scholar 

  31. Vijayendra, S. V. N., Rastogi, N. K., Shamala, T. R., Kumar, P. K. A., Kshama, L., & Joshi, G. J. (2007). Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source. Indian Journal of Microbiology, 47, 170–175.

    Article  CAS  Google Scholar 

  32. Asano, Y., Komeda, T., & Yamada, H. (1993). Microbial production of theobromine from caffeine. Bioscience, Biotechnology, and Biochemistry, 57, 1286–1289.

    Article  CAS  Google Scholar 

  33. Hakil, M., Voisinet, F., Viniegra-Gonza’lez, G., & Augur, C. (1999). Caffeine degradation in solid state fermentation by Aspergillus tamarii: effects of additional nitrogen sources. Process Biochemistry, 35, 103–109.

    Article  CAS  Google Scholar 

  34. Guzman, A. E. (1983). Efectos de nivel y naturaleza de fuentes de nitrogen0 sobre el mejoramiento de calidad quimico nutritional de la pulpa de café por fermentation solida usando Aspergillus niger. Tesis: Universidad San Carlos de Guatemala, Guatemala.

    Google Scholar 

  35. Peñaloza, W., Molina, M. R., Gomez, R., & Bressani, R. (1985). Solid state fermentation: an alternative to improve the nutritive value of coffee pulp. Applied and Environmental Microbiology, 49, 388–393.

    Google Scholar 

  36. Hakil, M., Denis, S., Viniegra-Gonza’lez, G., & Augur, C. (1998). Degradation and product analysis of caffeine and related methylxanthines by filamentous fungi. Enzyme and Microbial Technology, 22, 355–359.

    Article  CAS  Google Scholar 

  37. Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.

    Article  CAS  Google Scholar 

  38. Roussos, S., Hannibal, L., Aquiahuatl, M. A., Trejo-Hernandez, M. R., & Marakis, S. (1994). Caffeine degradation by Penicillium verrucosum in solid state fermentation of coffee pulp: critical effect of additional inorganic and organic nitrogen sources. Journal of Food Science and Technology, 31, 316–319.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CSIR- CFTRI for his support. First author is grateful to Council of Scientific and Industrial Research, New Delhi, India, for granting senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveena Bhatt.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanjundaiah, S., Bhatt, P., Rastogi, N.K. et al. Response Surface Optimization for Decaffeination and Theophylline Production by Fusarium solani . Appl Biochem Biotechnol 178, 58–75 (2016). https://doi.org/10.1007/s12010-015-1858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1858-x

Keywords

Navigation