Skip to main content
Log in

Clenbuterol Assay by Spectral Imaging Surface Plasmon Resonance Biosensor System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To prevent illegal use of clenbuterol and for quality control in the food industry, more efficient and reliable methods for clenbuterol detection are needed. In this study, clenbuterol was detected using a spectral imaging surface plasmon resonance sensor system via two inhibition methods: (1) the target site compensation method, in which anti-clenbuterol antibody was immobilized on the sensor chip as a bioprobe and (2) the solution competition method in which a clenbuterol-BSA conjugate was immobilized on the sensor chip as the bioprobe. The detectable clenbuterol concentration ranged between 6.25 and 100 μg/mL for both methods. The clenbuterol limit of detection for the target site compensation method and solution competition method are estimated to be 6.7 and 4.5 μg/mL, respectively. The proposed methods were successfully applied to the detection of clenbuterol molecules and were found to have high specificity and high-throughput and were label free and operationally convenient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CLEN:

Clenbuterol

anti-CLEN antibody:

Anti-clenbuterol polyclonal antibody

PDMS:

Polydimethylsiloxane

References

  1. Roda, A., Manetta, A. C., Piazza, F., Simoni, P., & Lelli, R. (2000). A rapid and sensitive 384-microtiter wells format chemiluminescent enzyme immunoassay for clenbuterol. Talanta, 52, 311–318.

    Article  CAS  Google Scholar 

  2. Degand, G., Bernes-Duyckaerts, A., & Maghuin-Rogister, G. (1992). Determination of clenbuterol in bovine tissues and urine by enzyme immunoassay. Journal of Agricultural and Food Chemistry, 40, 70–75.

    Article  CAS  Google Scholar 

  3. Guo, R. X., Xu, Q., Wang, D. Y., & Hu, X. Y. (2008). Trace determination of clenbuterol with an MWCNT-Nafion nanocomposite modified electrode. Microchimica Acta, 161, 265.

    Article  CAS  Google Scholar 

  4. Liu, L., Pan, H., Du, M., Xie, W., & Wang, J. (2010). Glassy carbon electrode modified with Nafion–Au colloids for clenbuterol electroanalysis. Electrochimica Acta, 55, 7240–7245.

    Article  CAS  Google Scholar 

  5. Pinheiro, I., Jesuino, B., Barbosa, J., Ferreira, H., Ramos, F., Matos, J., & da Silveira, M. I. N. (2009). Clenbuterol storage stability in the bovine urine and liver samples used for European official control in the Azores Islands. Journal of Agricultural and Food Chemistry, 57, 910–914.

    Article  CAS  Google Scholar 

  6. Pleadin, J., Vulic, A., Persi, N., Terzic, S., Andrisic, M., & Zarkovic, I. (2013). Rapid immunoassay method for the determination of clenbuterol and salbutamol in blood. Journal of Analytical Toxicology, 37, 241–245.

    Article  CAS  Google Scholar 

  7. Ramos, F., Cristino, A., Carrola, P., Eloy, T., Silva, J. M., Castilho, M. D., & da Silveira, M. I. N. (2003). Clenbuterol food poisoning diagnosis by gas chromatography–mass spectrometric serum analysis. Analytica Chimica Acta, 483, 207.

    Article  CAS  Google Scholar 

  8. Bomgern, A., Berggren, C., Holmberg, A., Larsson, F., Sellergren, B., & Ensing, K. (2002). Extraction of clenbuterol from calf urine using a molecularly imprinted polymer followed by quantitation by high-performance liquid chromatography with UV detection. Journal of Chromatography A, 975, 157–164.

    Article  Google Scholar 

  9. Bardin, F., Bellemain, A., Roger, G., & Canva, M. (2009). Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization. Biosensors and Bioelectronics, 24, 2100–2105.

    Article  CAS  Google Scholar 

  10. Shankaran, D. R., Kawaguchi, T., Kim, S. J., Matsumoto, K., Toko, K., & Miura, N. (2007). Fabrication of novel molecular recognition membranes by physical adsorption and self-assembly for surface plasmon resonance detection of TNT. International Journal of Environmental Analytical Chemistry, 87, 771–781.

    Article  CAS  Google Scholar 

  11. Gao, Y., Li, X. X., & Guo, L. H. (2012). Development of a label-free competitive ligand binding assay with human serum albumin on a molecularly engineered surface plasmon resonance sensor chip. Analytical Methods, 4, 3718.

    Article  CAS  Google Scholar 

  12. Wood, R. (1902). On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine, 4, 396–402.

    Article  Google Scholar 

  13. Liedberg, B., Nylander, C., & Lundstrom, I. (1995). Biosensing with surface plasmon resonance—how it all started. Biosensors and Bioelectronics, 10, R1–R9.

    Article  Google Scholar 

  14. Nylander, C., Liedberg, B., & Lind, T. (1982). Gas-detection by means of surface-plasmon resonance. Sensors and Actuators, 3, 79–88.

    Article  CAS  Google Scholar 

  15. Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54, 3–15.

    Article  CAS  Google Scholar 

  16. Patil, S., Srinivas, S., & Jadhav, J. (2014). Evaluation of crocin and curcumin affinity on mushroom tyrosinase using surface plasmon resonance. International Journal of Biological Macromolecules, 65, 163–166.

    Article  CAS  Google Scholar 

  17. Kwon, Y. C., Kim, M. G., Kim, E. M., Shin, Y. B., Lee, S. K., Lee, S. D., Cho, M. J., & Ro, H. S. (2011). Development of a surface plasmon resonance-based immunosensor for the rapid detection of cardiac troponin I. Biotechnology Letters, 33, 921–927.

    Article  CAS  Google Scholar 

  18. Sakai, G., Nakata, S., Uda, T., Miura, N., & Yamazoe, N. (1999). Highly selective and sensitive SPR immunosensor for detection of methamphetamine. Electrochimica Acta, 44, 3849–3854.

    Article  CAS  Google Scholar 

  19. Ramakrishnan, M., De Melo, F. A., Kinsey, B. M., Ladbury, J. E., Kosten, T. R., & Orson, F. M. (2012). Probing cocaine-antibody interactions in buffer and human serum. PLoS One, 7, e40518.

    Article  CAS  Google Scholar 

  20. McNamee, S. E., Elliott, C. T., Delahaut, P., & Campbell, K. (2013). Multiplex biotoxin surface plasmon resonance method for marine biotoxins in algal and seawater samples. Environmental Science and Pollution Research, 20, 6794–6807.

    Article  CAS  Google Scholar 

  21. Fang, X. Y., Tie, J., Xie, Y. H., Li, Q. J., Zhao, Q. C., & Fan, D. M. (2010). Detection of gastric carcinoma-associated antigen MG7-Ag in human sera using surface plasmon resonance sensor. Cancer Epidemiology, 34, 648–651.

    Article  CAS  Google Scholar 

  22. Fang, X. Y., Liu, C. L., Cheng, X. L., Wang, Y. L., & Yang, Y. C. (2011). A spectral imaging array biosensor and its application in detection of leukemia cell. Sensors and Actuators B: Chemical, 156, 760–764.

    Article  CAS  Google Scholar 

  23. Gambari, R., Feriotto, G., Rutigliano, C., Bianchi, N., & Mischiati, C. (2000). Biospecific interaction analysis (BIA) of low-molecular weight DNA-binding drugs. Journal of Pharmacology and Experimental Therapeutics, 294, 370–377.

    CAS  Google Scholar 

  24. Cheng, S. Y., Shi, F., Jiang, X. C., Wang, L. M., Chen, W. Q., & Zhu, C. G. (2012). Sensitive detection of small molecules by competitive immunomagnetic-proximity ligation assay. Analytical Chemistry, 84, 2129–2132.

    Article  CAS  Google Scholar 

  25. Johansson, M. A., & Hellenas, K. E. (2004). Matrix effects in immunobiosensor determination of clenbuterol in urine and serum. Analyst, 129, 438–442.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC (Grant No. 81371642) and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyi Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Yao, M., Fang, X. et al. Clenbuterol Assay by Spectral Imaging Surface Plasmon Resonance Biosensor System. Appl Biochem Biotechnol 177, 1327–1337 (2015). https://doi.org/10.1007/s12010-015-1817-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1817-6

Keywords

Navigation