Skip to main content
Log in

Characterization of Novel Cellulase-producing Bacteria Isolated From Rotting Wood Samples

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Seventeen bacterial isolates were screened for their cellulase activity by carboxymethyl cellulose (CMC) plate assay. The bacterial strain K1 showed the largest depolymerized region in CMC plate assay and was further studied for quantitative cellulase activity. On the basis of 16S rDNA sequence analysis, the strain K1 was found to be Bacillus sp. This strain produced the maximum CMCase at pH 6 and 50 °C in the presence of peptone (1 %) as a source of nitrogen. The CMCase activity was stimulated by Ca2+ (2 mM) by 20 % over the control. The CMCase activity of this Bacillus sp. K1 was highly induced when lactose was used as a source of carbon during fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mussatto, S. I., Dragone, G., Guimaraes, P. M., Silva, J. P., Carneiro, L. M., Roberto, I. C., Vicente, A., Domingues, L., & Teixeira, J. A. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 28, 817–830.

    Article  CAS  Google Scholar 

  2. Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., and Erbach, D. C. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. DTIC Document

  3. Zambare, V. P., Bhalla, A., Muthukumarappan, K., Sani, R. K., & Christopher, L. P. (2011). Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles, 15, 611–618.

    Article  CAS  Google Scholar 

  4. Lynd, L. R., Wyman, C. E., & Gerngross, T. U. (1999). Biocommodity engineering. Biotechnol Prog, 15, 777–793.

    Article  CAS  Google Scholar 

  5. Demirbas, A. (2007). Progress and recent trends in biofuels. Progress in Energy and Combustion Science, 33, 1–18.

    Article  CAS  Google Scholar 

  6. Kim, J., Yun, S., & Ounaies, Z. (2006). Discovery of cellulose as a smart material. Macromolecules, 39, 4202–4206.

    Article  CAS  Google Scholar 

  7. Immanuel, G., Dhanusha, R., Prema, P., & Palavesam, A. (2006). Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int J Environ Sci Technol, 3, 25–34.

    Article  CAS  Google Scholar 

  8. Saha, S., Roy, R. N., Sen, S. K., & Ray, A. K. (2006). Characterization of cellulase producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquaculture Research, 37, 380–388.

    Article  CAS  Google Scholar 

  9. Perez, J., Munoz-Dorado, J., de la Rubia, T. D. L. R., & Martinez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology, 5, 53–63.

    Article  CAS  Google Scholar 

  10. Nagendran, S., & Hallen-Adams, H. E. (2009). Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genetics and Biology, 46, 427–435.

    Article  CAS  Google Scholar 

  11. Cherry, J. R., & Fidantsef, A. L. (2003). Directed evolution of industrial enzymes: an update. Current Opinion in Biotechnology, 14, 438–443.

    Article  CAS  Google Scholar 

  12. Vyas, S., & Lachke, A. (2003). Biodeinking of mixed office waste paper by alkaline active cellulases from alkalotolerant Fusarium sp. Enzyme and Microbial Technology, 32, 236–245.

    Article  CAS  Google Scholar 

  13. Doi, R. (2008). Cellulases of mesophilic microorganisms. Annals of the New York Academy of Sciences, 1125, 267.

    Article  CAS  Google Scholar 

  14. Miller, G. L. (1959). Use of DNS reagent for the measurement of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  15. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  16. Maki, M. L., Broere, M., Leung, K. T., & Qin, W. (2011). Characterization of some efficient cellulase producing bacteria isolated from paper mill sludges and organic fertilizers. Int J Biochem Mol Biol, 2, 146.

    CAS  Google Scholar 

  17. Gautam, S. P., Bundela, P. S., Pandey, A. K., Khan, J., Awasthi, M. K., & Sarsaiya, S. (2011). Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnology Research International, 1–8.

  18. Shankar, T., & Isaiarasu, L. (2011). Cellulase production by Bacillus pumilus EWBCM1 under varying cultural conditions. Middle-East Journal of Scientific Research, 8, 40–45.

    CAS  Google Scholar 

  19. Amritkar, N., Kamat, M., & Lali, A. (2004). Expanded bed affinity purification of bacterial a-amylase and cellulase on composite substrate analogue-cellulose matrices. Process Biochemistry, 39, 565–570.

    Article  CAS  Google Scholar 

  20. Sheng, P., Huang, S., Wang, Q., Wang, A., & Zhang, H. (2012). Isolation, screening, and optimization of the fermentation conditions of highly cellulolytic bacteria from the hindgut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Applied Biochemistry and Biotechnology, 167, 270–284.

    Article  CAS  Google Scholar 

  21. Dees, C., Ringleberg, D., Scott, T. C., & Phelps, T. (1994). Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462. TN: Oak Ridge National Lab.

    Google Scholar 

  22. Guedon, E., Desvaux, M., & Petitdemange, H. (2002). Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Applied and Environmental Microbiology, 68, 53–58.

    Article  CAS  Google Scholar 

  23. Priest, F. G. (1977). Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Reviews, 41, 711.

    CAS  Google Scholar 

  24. Kang, S. W., Park, Y. S., Lee, J. S., Hong, S. I., & Kim, S. W. (2004). Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technology, 91, 153–156.

    Article  CAS  Google Scholar 

  25. Kotchoni, S. O., & Shonukan, O. O. (2002). Regulatory mutations affecting the synthesis of cellulase in Bacillus pumilus. World Journal of Microbiology and Biotechnology, 18, 487–491.

    Article  CAS  Google Scholar 

  26. Ariffin, H., Hassan, M. A., Shah, U. K. M., Abdullah, N., Ghazali, F. M., & Shirai, Y. (2008). Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. Journal of Bioscience and Bioengineering, 106, 231–236.

    Article  CAS  Google Scholar 

  27. Narasimha, G., Sridevi, A., Viswanath, B., & Reddy, R. (2006). Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. African Journal of Biotechnology, 5, 472–476.

    CAS  Google Scholar 

  28. Kocher, G. S., Kalra, K. L., & Banta, G. (2008). Optimization of cellulase production by submerged fermentation of rice straw by Trichoderma harzianum Rut-C 8230. Internet J Microbiol, 5, 2.

    Google Scholar 

  29. Rastogi, G., Bhalla, A., Adhikari, A., Bischoff, K. M., Hughes, S. R., Christopher, L. P., & Sani, R. K. (2010). Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresource Technology, 101, 8798–8806.

    Article  CAS  Google Scholar 

  30. Abdel-Fattah, Y. R., El-Helow, E. R., Ghanem, K. M., & Lotfy, W. A. (2007). Application of factorial designs for optimization of avicelase production by a thermophilic Geobacillus isolate. Research Journal of Microbiology, 2, 13–23.

    Article  CAS  Google Scholar 

  31. Kim, B. K., Lee, B. H., Lee, Y. J., Jin, I. H., Chung, C. H., & Lee, J. W. (2009). Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme and Microbial Technology, 44, 411–416.

    Article  CAS  Google Scholar 

  32. Ray, A. K., Bairagi, A., Ghosh, K. S., & Sen, S. K. (2007). Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyologica et Piscatoria, 1, 47–53.

    Article  Google Scholar 

  33. Robson, L. M., & Chambliss, G. H. (1989). Cellulases of bacterial origin. Enzyme and Microbial Technology, 11, 626–644.

    Article  CAS  Google Scholar 

  34. Mawadza, C., Hatti-Kaul, R., Zvauya, R., & Mattiasson, B. (2000). Purification and characterization of cellulases produced by two Bacillus strains. Journal of Biotechnology, 83, 177–187.

    Article  CAS  Google Scholar 

  35. Sadhu, S., Ghosh, P. K., De, T. K., & Maiti, T. K. (2013). Optimization of cultural condition and synergistic effect of lactose with carboxymethyl cellulose on cellulase production by Bacillus sp. isolated from fecal matter of elephant (Elephas maximus). Adv Microbiol, 3, 280.

    Article  Google Scholar 

  36. Sadhu, S., Ghosh, P. K., Aditya, G., & Maiti, T. K. (2014). Optimization and strain improvement by mutation for enhanced cellulase production by Bacillus sp. (MTCC10046) isolated from cow dung. J King Saud Univ Sci, 26, 323–332.

    Article  Google Scholar 

  37. Lee, Y. J., Kim, B. K., Lee, B. H., Jo, K. I., Lee, N. K., Chung, C. H., Lee, Y. C., & Lee, J. W. (2008). Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource Technology, 99, 378–386.

    Article  CAS  Google Scholar 

  38. Fu, X., Liu, P., Lin, L., Hong, Y., Huang, X., Meng, X., & Liu, Z. (2010). A novel endoglucanase (Cel9P) from a marine bacterium Paenibacillus sp. BME-14. Applied Biochemistry and Biotechnology, 160, 1627–1636.

    Article  CAS  Google Scholar 

  39. Mansfield, S. D., Saddler, J. N., & Gubitz, G. M. (1998). Characterization of endoglucanases from the brown rot fungi Gloeophyllum sepiarium and Gloeophyllum trabeum. Enzyme and Microbial Technology, 23, 133–140.

    Article  CAS  Google Scholar 

  40. Aygan, A. S. H. A., & Arikan, B. U. R. H. (2008). A new halo-alkaliphilic, thermostable endoglucanase from moderately halophilic Bacillus sp. C14 isolated from Van soda lake. Int J Agric Biol, 10, 369–374.

    CAS  Google Scholar 

  41. Yang, W., Meng, F., Peng, J., Han, P., Fang, F., Ma, L., & Cao, B. (2014). Isolation and identification of a cellulolytic bacterium from the Tibetan pig’s intestine and investigation of its cellulase production. Electronic Journal of Biotechnology, 17, 262–267.

    Article  CAS  Google Scholar 

  42. Bairagi, A., Ray, A. K., Sarkar, G. K., & Sen, S. K. (2007). Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyologica et Piscatoria, 37, 47–53.

    Article  Google Scholar 

  43. Acharya, S., & Chaudhary, A. (2011). Effect of nutritional and environmental factors on cellulases activity by thermophilic bacteria isolated from hot spring. J Sci Ind Res, 70, 142–148.

    CAS  Google Scholar 

  44. Miyamoto, Y., Ooi, T., & Kinoshita, S. (2000). Production of lactobionic acid from whey by Pseudomonas sp. LS13-1. Biotechnology Letters, 22, 427–430.

    Article  CAS  Google Scholar 

  45. Sadhu, S., Saha, P., Mayilraj, S., & Maiti, T. K. (2011). Lactose-enhanced cellulase production by Microbacterium sp. isolated from fecal matter of zebra (Equus zebra). Current Microbiology, 62, 1050–1055.

    Article  CAS  Google Scholar 

  46. El-Hadi, A. A., El-Nour, S. A., Hammad, A., Kamel, Z., & Anwar, M. (2014). Optimization of cultural and nutritional conditions for carboxymethylcellulase production by Aspergillus hortai. J Radiat Res Appl Sci, 7, 23–28.

    Article  CAS  Google Scholar 

  47. Karaffa, L., Fekete, E., Gamauf, C., Szentirmai, A., Kubicek, C. P., & Seiboth, B. (2006). d-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology, 152, 1507–1514.

    Article  CAS  Google Scholar 

  48. Bischoff, K. M., Rooney, A. P., Li, X. L., Liu, S., & Hughes, S. R. (2006). Purification and characterization of a family 5 endoglucanase from a moderately thermophilic strain of Bacillus licheniformis. Biotechnology Letters, 28, 1761–1765.

    Article  CAS  Google Scholar 

  49. Hakamada, Y., Endo, K., Takizawa, S., Kobayashi, T., Shirai, T., Yamane, T., & Ito, S. (2002). Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochim Biophys Acta Gen Subj, 1570, 174–180.

    Article  CAS  Google Scholar 

  50. Ozaki, K., & Ito, S. (1991). Purification and properties of an acid endo-1, 4- β -glucanase from Bacillus sp. KSM-330. Journal of General Microbiology, 137, 41–48.

    Article  CAS  Google Scholar 

  51. Li, Y. H., Ding, M., Wang, J., Xu, G. J., & Zhao, F. (2006). A novel thermoacidophilic endoglucanase, Ba-EGA, from a new cellulose-degrading bacterium, Bacillus sp. AC-1. Applied Microbiology and Biotechnology, 70, 430–436.

    Article  CAS  Google Scholar 

  52. Christakopoulos, P., Hatzinikolaou, D. G., Fountoukidis, G., Kekos, D., Claeyssens, M., & Macris, B. J. (1999). Purification and mode of action of an alkali-resistant endo-1, 4- β-glucanase from Bacillus pumilus. Archives of Biochemistry and Biophysics, 364, 61–66.

    Article  CAS  Google Scholar 

  53. Okoshi, H., Ozaki, K., Shikata, S., Oshino, K., Kawai, S., & Ito, S. (1990). Purification and characterization of multiple carboxymethyl cellulases from Bacillus sp. KSM-522. Agricultural and Biological Chemistry, 54, 83–89.

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paudel, Y.P., Qin, W. Characterization of Novel Cellulase-producing Bacteria Isolated From Rotting Wood Samples. Appl Biochem Biotechnol 177, 1186–1198 (2015). https://doi.org/10.1007/s12010-015-1806-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1806-9

Keywords

Navigation