Skip to main content
Log in

Characterization of Inulin Hydrolyzing Enzyme(s) in Oleaginous Yeast Trichosporon cutaneum in Consolidated Bioprocessing of Microbial Lipid Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Oleaginous yeast Trichosporon cutaneum CGMCC 2.1374 was found to utilize inulin directly for microbial lipid fermentation without a hydrolysis step. The potential inulinase-like enzyme(s) in T. cutaneum CGMCC 2.1374 were characterized and compared with other inulinase enzymes produced by varied yeast strains. The consolidated bioprocessing (CBP) for lipid accumulated using inulin was optimized with 4.79 g/L of lipid produced from 50 g/L inulin with the lipid content of 33.6 % in dry cells. The molecular weight of the enzyme was measured which was close to invertase in Saccharomyces cerevisiae. The study provided information for inulin hydrolyzing enzyme(s) in oleaginous yeasts, as well as a preliminary CBP process for lipid production from inulin feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao, C. H., Cui, W., Liu, X. L., Chi, Z. M., & Madzak, C. (2010). Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials. Metabolic Engineering., 6(12), 510–517.

    Article  Google Scholar 

  2. Meng, X., Yang, J. M., Xu, X., Zhang, L., Nie, Q. J., Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy 1(34): 1–5.

  3. Zhao, C. H., Chi, Z., Zhang, F., Guo, F. J., Li, M., Song, W. B., & Chi, Z. M. (2011). Direct conversion of inulin and extract of tubers of Jerusalem artichoke into single cell oil by co-cultures of Rhodotorula mucilaginosa TJY15a and immobilized inulinase-producing yeast cells. Bioresource Technology., 10(102), 6128–6133.

    Article  Google Scholar 

  4. Donot, F., Fontana, A., Baccou, J. C., Strub, C., & Schorr-Galindo, S. (2014). Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass and Bioenergy, 68, 135–150.

    Article  CAS  Google Scholar 

  5. Lynd L. R, Laser M. S, Brandsby D., Dale B. E., Davison B. (2008). How biotech can transform biofuels. Nature Biotechnology. 2(26): 169–172.

  6. Chi, Z. M., Chi, Z., Zhang, T., Liu, G. L., & Yue, L. X. (2009). Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology Biotechnology., 2(82), 211–220.

    Article  Google Scholar 

  7. Marzena, J. K., Karolina, L. T., & Stanislaw, B. (2003). Identification of the gene for β-fructofuranosidase of Bifidobacterium lactis DSM10140T and characterization of the enzyme expressed in Escherichia coli. Current Microbiology., 6(46), 391–397.

    Google Scholar 

  8. Yuna, B., Wang, S. A., & Li, F. L. (2013). Improved ethanol fermentation by heterologous endoinulinase and inherent invertase from inulin by Saccharomyces cerevisiae. Bioresource Technology., 139, 402–405.

    Article  Google Scholar 

  9. An, K. H., Hu, F. X., & Bao, J. (2013). Simultaneous saccharification of inulin and starch using commercial glucoamylase and the subsequent bioconversion to high titer sorbitol and gluconic acid. Applied Microbiology Biotechnology., 8(171), 2093–2104.

    Google Scholar 

  10. Schorr-Galindo, S., Ghommidh, C., & Guiraud, J. P. (2000). Influence of yeast flocculation on the rate of Jerusalem artichoke extract fermentation. Current Microbiology, 2(41), 89–95.

    Article  Google Scholar 

  11. Dao, T. H., Zhang, J., & Bao, J. (2013). Characterization of inulin hydrolyzing enzyme(s) in commercial glucoamylases and its application in lactic acid production from Jerusalem artichoke tubers (Jat). Bioresource Technology., 148, 157–162.

    Article  CAS  Google Scholar 

  12. Zhao, C. H., Zhang, T., Li, M., & Chi, Z. M. (2010). Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochemistry., 7(45), 1121–1126.

    Article  Google Scholar 

  13. Lane, M. M., & Morrissey, J. P. (2010). Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biology reviews, 1-2(24), 17–26.

    Article  Google Scholar 

  14. Wang, Y. M., Liu, W., & Bao, J. (2012). Repeated batch fermentation with water recycling and cell separation for microbial lipid production. Frontiers of Chemical Science and Engineering., 4(6), 453–460.

    Article  Google Scholar 

  15. Wang, S. A., & Li, F. L. (2013). Invertase SUC2 is the key hydrolase for inulin degradation in Saccharomyces cerevisiae. Applied Environment Microbiology., 1(79), 403–406.

    Article  Google Scholar 

  16. Wang, Z. P., Fu, W. J., Xu, H. M., & Chi, Z. M. (2014). Direct conversion of inulin into cell lipid by an inulinase-producing yeast Rhodosporidium toruloides 2F5. Bioresource Technology., 161, 131–136.

    Article  CAS  Google Scholar 

  17. Chu, D. Q., Zhang, J., & Bao, J. (2012). Simultaneous saccharification and ethanol fermentation of corn Stover at high temperature and high solids loading by a thermotolerant strain Saccharomyces cerevisiae DQ1. Bioenerg. Res., 4(5), 1020–1026.

    Article  Google Scholar 

  18. Folch, J., Lees, M., & Sloane-Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of biological Chemistry., 226, 497–509.

    CAS  Google Scholar 

  19. Gao, Q. Q., Cui, Z. Y., Zhang, J., & Bao, J. (2014). Lipid fermentation of corncob residues hydrolysate by oleaginous yeast Trichosporon cutaneum. Bioresource Technology., 152, 552–556.

    Article  CAS  Google Scholar 

  20. Wang, J., Jin, Z. Y., Bo, J., & Adamu, A. (2003). Production and separation of exo- and endoinulinase from Aspergillus ficuum. Process Biochemistry, 1(39), 5–11.

    Google Scholar 

  21. Westphal, V., Marcusson, E. G., Winther, J. R., Emr, S. D., & van den Hazel, H. B. (1996). Multiple pathways for vacuolar sorting of yeast proteinase A. Journal of Biological Chemistry., 271, 11865–11870.

    Article  CAS  Google Scholar 

  22. Guo, L. H., Zhang, J., Hu, F. X., & Bao, J. (2013). Consolidated bioprocessing of highly concentrated Jerusalem artichoke tubers for simultaneous saccharification and ethanol fermentation. Biotechnology Bioengineering., 10(110), 2606–2615.

    Article  Google Scholar 

  23. Kim, S., Park, J. M., & Kim, C. H. (2013). Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555. Applied Biochemistry and Biotechnology., 5(169), 1531–1545.

    Article  Google Scholar 

  24. Olmea, O., Chinea, G., Beldarrain, A., Marquez, G., Acosta, N., Rodriguez, L., & Valencia, A. (1998). Structural model for family 32 of glycosyl-hydrolase enzymes. Proteins Structure Function & Bioinformatics., 3(33), 383–395.

    Google Scholar 

  25. Zhang, L. L., Tang, M. J., Liu, G. L., Wang, G. Y., & Chi, Z. M. (2015). Cloning and characterization of an inulinase gene from the marine yeast Candida membranifaciens subsp. flavinogenie W14-3 and its expression in Saccharomyces sp. W0 for ethanol production. Molecular Biotechnology, 4(57), 337–347.

    Article  Google Scholar 

  26. Goldman, D., Lavid, N., Schwartz, A., Shoham, G., Danino, D., & Shoham, Y. (2008). Two active forms of Zymomonas mobilis levansucrase: an ordered microfibril structure of the enzyme promotes levan polymerization. Journal of Biological Chemistry., 47(283), 32209–32217.

    Article  Google Scholar 

  27. Chaudhary, A., Gupta, L. K., Gupata, J. K., & Banerjee, U. C. (1996). Purification and properties of levanase from Rhodotorula sp. Journal of Biotechnology., 1(46), 55–61.

    Article  Google Scholar 

  28. Ali, S., & Haq, I. (2007). Kinetics of improved extracellular beta-D-fructofuranosidase fructohydrolase production by a derepressed Saccharomyces cerevisiae. Letters in Applied Microbiology., 2(45), 160–167.

    Article  Google Scholar 

  29. Kushi, R. T., Monti, R., & Cotiero, J. (2000). Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. Journal of Industrial Microbiology & Biotechnology, 2(25), 63–69.

    Article  Google Scholar 

  30. Laloux, O., Cassart, J. P., Delcour, J., Van, B. J., & Vandenhaute, J. (1991). Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Letters, 1(289), 64–68.

    Article  Google Scholar 

  31. Yu, X. J., Guo, N., Chi, Z. M., Gong, F., Sheng, J., & Chi, Z. (2009). Inulinase overproduction by a mutant of the marine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis. Biochemical Engineering Journal., 3(43), 266–271.

    Article  Google Scholar 

  32. Williams, R. S., Trumbly, R. J., MacColl, R., Trimble, R. B., & Maley, F. (1985). Comparative properties of amplified external and internal invertase from the yeast SUC2 gene. Journal of Biological Chemistry., 24(260), 13334–13341.

    Google Scholar 

  33. Dujon, B., Sherman, D., Fischer, G., et al. (2004). Genome evolution in yeasts. Nature, 6995(430), 35–44.

    Article  Google Scholar 

  34. Agaphonov, M. O., Packeiser, A. N., Chechenova, M. B., Choi, E. S., & Ter-Avanesyan, M. D. (2001). Mutation of the homologue of GDP-mannose pyrophosphorylase alters cell wall structure, protein glycosylation and secretion in Hansenula polymorpha. Yeast, 5(18), 391–402.

    Article  Google Scholar 

  35. Bommareddy, R. R., Sabra, W., Maheshwari, G., & Zeng, A. P. (2015). Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates. Microbial Cell Factories, 14, 36.

    Article  Google Scholar 

  36. Vajpeyi, S., & Chandran, K. (2015). Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids. Bioresource Technology., 188, 49–55.

    Article  CAS  Google Scholar 

  37. Sestric, R., Munch, G., Cicek, N., Sparling, R., & Levin, D. B. (2014). Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresource Technology., 164, 41–46.

    Article  CAS  Google Scholar 

  38. Ratledge C., Wynn J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology. 51: 1–51.

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (2011CB707406) and the National High-Tech Program of China (2012AA022301, 2014AA021901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huizhan Zhang or Jie Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, H. & Bao, J. Characterization of Inulin Hydrolyzing Enzyme(s) in Oleaginous Yeast Trichosporon cutaneum in Consolidated Bioprocessing of Microbial Lipid Fermentation. Appl Biochem Biotechnol 177, 1083–1098 (2015). https://doi.org/10.1007/s12010-015-1798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1798-5

Keywords

Navigation