Skip to main content

Advertisement

Log in

Characterization and Differentiation of Stem Cells Isolated from Human Newborn Foreskin Tissue

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Circumcision is described as a cultural, medical, and religious process which states surgical removal of the foreskin either partly or fully. Cells isolated from the circumcised tissues are referred as foreskin cells. They have been thought as feeder cell lines for embryonic stem cells. Their fibroblastic properties were also utilized for several experiments. The waste tissues that remain after the circumcision thought to have stem cell properties. Therefore, there have been very few attempts to expose their stem cell properties without turning them into induced pluripotent stem cells. Although stem cell isolation from prepuce and their mesenchymal multilineage differentiation potential have been presented many times in the literature, the current study explored hematopoietical phenotype of newborn foreskin stem cells for the first time. According to the results, human newborn foreskin stem cells (hnFSSCs) were identified by their capability to turn into all three germ layer cell types under in vitro conditions. In addition, these cells have exhibited a stable phenotype and have remained as a monolayer in vitro. hnFSSCs suggested to carry different treatment potentials for bone damages, cartilage problems, nerve damages, lesion formations, and other diseases that are derive from mesodermal, endodermal, and ectodermal origins. Owing to the location of the tissue in the body and differentiation capabilities of hnFSSCs, these cells can be considered as easily obtainable and utilizable even better than the other stem cell sources. In addition, hnFSSCs offers a great potential for tissue engineering approaches due to exhibiting embryonic stem cell-like characteristics, not having any ethical issues, and teratoma induction as in embryonic stem cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amit, M., Margulets, V., Segev, H., Shariki, K., Laevsky, I., Coleman, R., & Itskovitz-Eldor, J. (2003). Human feeder layers for human embryonic stem cells. Biology of Reproduction, 68, 2150–2156.

    Article  CAS  Google Scholar 

  2. Borges-Silva C. N., Fonseca-Alaniz M. H., Alonso-Vale M. I., Takada J., Andreotti S., Peres S. B., Cipolla-Neto J., Pithon-Curi T. C., Lima F. B. (2005) Reduced lipolysis and increased lipogenesis in adipose tissue from pinealectomized rats adapted to training. J Pineal Res, 39, 178–184

    Article  CAS  Google Scholar 

  3. Bredesen, D. E., Rao, R. V., & Mehlen, P. (2006). Cell death in the nervous system. Nature, 443, 796–802.

    Article  CAS  Google Scholar 

  4. Brighton, C. T., & Hunt, R. M. (1991). Early histological and ultrastructural changes in medullary fracture callus. The Journal of Bone and Joint Surgery. American Volume, 73, 832–847.

    CAS  Google Scholar 

  5. Brighton, C. T., & Hunt, R. M. (1997). Early histologic and ultrastructural changes in microvessels of periosteal callus. Journal of Orthopaedic Trauma, 11, 244–253.

    Article  CAS  Google Scholar 

  6. Canning, D. A. (2013). Re: circumcision policy statement. The Journal of Urology, 190, 1378.

    Google Scholar 

  7. Cold, C. J., & Taylor, J. R. (1999). The prepuce. BJU International, 83(Suppl 1), 34–44.

    Google Scholar 

  8. Cukierman, E., Pankov, R., Stevens, D. R., & Yamada, K. M. (2001). Taking cell-matrix adhesions to the third dimension. Science, 294, 1708–1712.

    Article  CAS  Google Scholar 

  9. Dogan, A., Yalvac, M. E., Sahin, F., Kabanov, A. V., Palotas, A., & Rizvanov, A. A. (2012). Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers. International Journal of Nanomedicine, 7, 4849–4860.

    CAS  Google Scholar 

  10. Guven, E. P., Tasli, P. N., Yalvac, M. E., Sofiev, N., Kayahan, M. B., & Sahin, F. (2013). In vitro comparison of induction capacity and biomineralization ability of mineral trioxide aggregate and a bioceramic root canal sealer. International Endodontic Journal.

  11. Hirt-Burri, N., Scaletta, C., Gerber, S., Pioletti, D. P., & Applegate, L. A. (2008). Wound-healing gene family expression differences between fetal and foreskin cells used for bioengineered skin substitutes. Artificial Organs, 32, 509–518.

    Article  Google Scholar 

  12. Hovatta, O., Mikkola, M., Gertow, K., Stromberg, A. M., Inzunza, J., Hreinsson, J., Rozell, B., Blennow, E., Andang, M., & Ahrlund-Richter, L. (2003). A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Human Reproduction, 18, 1404–1409.

    Article  Google Scholar 

  13. Huang, H. I., Chen, S. K., Ling, Q. D., Chien, C. C., Liu, H. T. and Chan, S. H. (2010) Multilineage differentiation potential of fibroblast-like stromal cells derived from human skin. Tissue Engineering, Part A, 16, 1491–1501.

  14. Huang, H. I., Chen, S. K., Wang, R. Y., Shen, C. R., & Cheng, Y. C. (2013). Human foreskin fibroblast-like stromal cells can differentiate into functional hepatocytic cells. Cell Biology International, 37, 1308–1319.

    Article  CAS  Google Scholar 

  15. Joshi, C. V., & Enver, T. (2002). Plasticity revisited. Current Opinion in Cell Biology, 14, 749–755.

    Article  CAS  Google Scholar 

  16. Long, L., Yu, P., Liu, Y., Wang, S., Li, R., Shi, J., Zhang, X., Li, Y., Sun, X., Zhou, B., Cui, L., & Li, Z. (2013). Up-regulated microRNA-155 expression in peripheral blood mononuclear cells and fibroblast-like synoviocytes in rheumatoid arthritis. Clin Dev Immunol,, 2013, 296139–296139.

    Article  Google Scholar 

  17. Pruessner, H. T. (1998). Detecting celiac disease in your patients. American Family Physician, 57(1023–1034), 1039–1041.

    Google Scholar 

  18. Rasulov, M. F., Vasilchenkov, A. V., Onishchenko, N. A., Krasheninnikov, M. E., Kravchenko, V. I., Gorshenin, T. L., Pidtsan, R. E., & Potapov, I. V. (2005). First experience of the use bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns. Bulletin of Experimental Biology and Medicine, 139, 141–144.

    Article  CAS  Google Scholar 

  19. Romanov, Y. A., Darevskaya, A. N., Merzlikina, N. V., & Buravkova, L. B. (2005). Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization, and differentiation potentialities. Bulletin of Experimental Biology and Medicine, 140, 138–143.

    Article  CAS  Google Scholar 

  20. Sanz-Rodriguez, F., Guerrero-Esteo, M., Botella, L. M., Banville, D., Vary, C. P., & Bernabeu, C. (2004). Endoglin regulates cytoskeletal organization through binding to ZRP-1, a member of the Lim family of proteins. The Journal of Biological Chemistry, 279, 32858–32868.

    Article  CAS  Google Scholar 

  21. Schoen, E. J., Colby, C. J., & Ray, G. T. (2000). Newborn circumcision decreases incidence and costs of urinary tract infections during the first year of life. Pediatrics, 105, 789–793.

    Article  CAS  Google Scholar 

  22. Schor, S. L., Schor, A. M., & Bazill, G. W. (1981). The effects of fibronectin on the migration of human foreskin fibroblasts and Syrian hamster melanoma cells into three-dimensional gels of native collagen fibres. Journal of Cell Science, 48, 301–314.

    CAS  Google Scholar 

  23. Shen, B., Wei, A., Whittaker, S., Williams, L. A., Tao, H., Ma, D. D., & Diwan, A. D. (2010). The role of BMP-7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro. J Cell Biochem, 109, 406–416.

    CAS  Google Scholar 

  24. Supp, D. M., & Boyce, S. T. (2005). Engineered skin substitutes: practices and potentials. Clinics in Dermatology, 23, 403–412.

    Article  Google Scholar 

  25. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  CAS  Google Scholar 

  26. Tasli, P. N., & Sahin, F. (2014). Effect of lactoferrin on odontogenic differentiation of stem cells derived from human 3rd molar tooth germ. Applied Biochemistry and Biotechnology, 174, 2257–2266.

    Article  CAS  Google Scholar 

  27. Tasli, P. N., Dogan, A., Demirci, S., & Sahin, F. (2013a). Boron enhances odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs) in vitro. Biological Trace Element Research, 153, 419–427.

    Article  CAS  Google Scholar 

  28. Tasli, P. N., Tapsin, S., Demirel, S., Yalvac, M. E., Akyuz, S., Yarat, A., & Sahin, F. (2013b). Isolation and characterization of dental pulp stem cells from a patient with papillon-lefevre syndrome. Journal of Endodontics, 39, 31–38.

    Article  Google Scholar 

  29. Tasli, P. N., Dogan, A., Demirci, S., & Sahin, F. (2015). Myogenic and neurogenic differentiation of human tooth germ stem cells (hTGSCs) are regulated by pluronic block copolymers. Cytotechnology.

  30. Taylor, J. R., Lockwood, A. P., & Taylor, A. J. (1996). The prepuce: specialized mucosa of the penis and its loss to circumcision. British Journal of Urology, 77, 291–295.

    Article  CAS  Google Scholar 

  31. Vajta, G., & Gjerris, M. (2006). Science and technology of farm animal cloning: state of the art. Animal Reproduction Science, 92, 211–230.

    Article  Google Scholar 

  32. Young, H. E., & Black Jr., A. C. (2004). Adult stem cells. The anatomical record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 276, 75–102.

    Article  Google Scholar 

  33. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, I. I., & Thomson, J. A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Burçin Keskin for her help. The authors deny any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikrettin Şahin.

Electronic Supplementary Material

Supplementary Data

Mesenchymal stem cell characterization of human newborn foreskin stem cells at passage 3. Major population of cells maintained the characteristics of stem cells. Flow cytometry analysis data shows the positive mesenchymal stem cell surface markers CD29, CD44, CD73, and CD90 and the negative endothelial stem cell surface marker CD31. Data also indicates the positive hematopoietic stem cell surface markers CD45, CD34, and CD14. NC negative control. (GIF 293 kb)

High-resolution image (TIFF 1.34 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somuncu, Ö.S., Taşlı, P.N., Şişli, H.B. et al. Characterization and Differentiation of Stem Cells Isolated from Human Newborn Foreskin Tissue. Appl Biochem Biotechnol 177, 1040–1054 (2015). https://doi.org/10.1007/s12010-015-1795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1795-8

Keywords

Navigation