Skip to main content
Log in

Study of Biological Degradation of New Poly(Ether-Urethane-Urea)s Containing Cyclopeptide Moiety and PEG by Bacillus amyloliquefaciens Isolated from Soil

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present work for the first time investigates the effect of Bacillus amyloliquefaciens, M3, on a new poly(ether-urethane-urea) (PEUU). PEUU was synthesized via reaction of 4,4′-methylenebis(4-phenylisocyanate) (MDI), l-leucine anhydride cyclopeptide (LACP) as a degradable monomer and polyethylene glycol with molecular weight of 1000 (PEG-1000). Biodegradation of the synthesized PEUU as the only source for carbon and nitrogen for M3 was studied. The co-metabolism biodegradation of the polymer by this organism was also investigated by adding mannitol or nutrient broth to the basic media. Biodegradation of the synthesized polymer was followed by SEM, FT-IR, TGA, and XRD techniques. It was shown that incubation of PEUU with M3 resulted in a 30–44 % reduction in polymer’s weight after 1 month. This study indicates that the chemical structure of PEUU significantly changes after exposure to M3 due to hydrolytic and enzymatic degradation of polymer chains. The results of this work supports the idea that this poly(ether-urethane) is used as a sole carbon source by M3 and this bacterium has a good capability for degradation of poly(ether-urethane)s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mathur, G., & Prasad, R. (2012). Degradation of polyurethane by Aspergillus flavus (ITCC 6051) isolated from soil. Applied Biochemistry and Biotechnology, 167, 1595–1602. doi:10.1007/s12010-012-9572-4.

    Article  CAS  Google Scholar 

  2. Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2, 307–344. doi:10.3390/ma2020307.

    Article  CAS  Google Scholar 

  3. Avérous, L., & Pollet, E. (2012). Environmental silicate nano-biocomposites, green energy and technology. Chapter 2, biodegradable polymers. London:Springer-Verlag. doi:10.1007/978-1-4471-4108-2_2.

    Book  Google Scholar 

  4. Howard, G. T. (2011). Microbial biodegradation of polyurethane. Transworld Research Network, 215, 238.

    Google Scholar 

  5. Loredo-Trevino, A., Gutierrez-Sanchez, G., & Rodrıguez-Herrera, R. (2012). Microbial enzymes involved in polyurethane biodegradation. Journal of Polymer and the Environment, 20, 258–265. doi:10.1007/s10924-011-0390-5.

    Article  CAS  Google Scholar 

  6. Oceguera-Cervantes, A., Carrillo-Garcıa, A., Lopez, N., Bolanos-Nunez, S., Cruz-Gomez, M. J., Wacher, C., & Loza-Tavera, H. (2007). Characterization of the polyurethanolytic activity of two Alicycliphilus sp. strains able to degrade polyurethane and N-methylpyrrolidone. Applied and Environmental Microbiology, 73, 6214–6223. doi:10.1128/AEM.01230-07.

    Article  CAS  Google Scholar 

  7. Skarja, G. A., & Woodhouse, K. A. (1999). Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. Journal of Applied Polymer Science, 75, 1522–1534. doi:10.1002/(SICI)1097-4628(20000321)75:12<1522::AID-APP11>3.0.co;2-A.

    Article  Google Scholar 

  8. Pegoretti, A., Fambri, L., Penati, A., & Kolarik, J. (1998). Hydrolytic resistance of model poly(ether urethane ureas) and poly(ester urethane ureas). Journal of Applied Polymer Science, 70, 577–586. doi:10.1002/(SICI)1097-4628(19981017)70:3<577::AID-APP20>3.0.co;2-X.

    Article  CAS  Google Scholar 

  9. Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Degradation of polyurethane by novel bacterial consortium isolated from soil. Annals of Microbiology, 58, 381–386. doi:10.1002/(SICI)1097-4628(19981017)70:3<577::AID-APP20>3.0.co;2-X.

    Article  CAS  Google Scholar 

  10. Guelcher, S. A., Gallagher, K. M., Didier, J. E., Klinedinst, D. B., Doctor, J. S., Goldstein, A. S., Wilkes, G. L., Beckman, E. J., & Hollinger, J. O. (2005). Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomaterial, 1, 471–484.

    Article  Google Scholar 

  11. Gautam, R., Bassi, A. S., & Yanful, E. K. (2007). Candida rugosa lipase catalyzed polyurethane degradation in aqueous medium. Biotechnology Letters, 29, 1081–1086. doi:10.1007/s10529-007-9354-1.

    Article  CAS  Google Scholar 

  12. Wang, G. B., Labow, R. S., & Santerre, J. P. (1997). Biodegradation of a poly(ester)urea-urethane by cholesterol esterase: isolation and identification of principal biodegradation products. Journal of Biomedical Materials Research, 36, 407–417. doi:10.1002/(SICI)1097-4636(19970905)36:3<407::AID-JBM16>3.0.co;2-A.

    Article  CAS  Google Scholar 

  13. Gong, C. Y., Fu, S. Z., Gu, Y. C., Liu, C. B., Kan, B., Deng, H. X., Luo, F., & Qian, Z. Y. (2009). Synthesis, characterization, and hydrolytic degradation of biodegradable poly(ether ester)-urethane copolymers based on ε-caprolactone and poly(ethylene glycol). Journal of Applied Polymer Science, 113, 1111–1119. doi:10.1002/app.29946.

    Article  CAS  Google Scholar 

  14. Arcana, I. M., Bundjali, B., Hasan, M., Hariyawati, K., Mariani, H., Anggraini, S. D., & Ardana, A. (2010). Study on properties of poly (urethane-ester) synthesized from prepolymers of ε-caprolactone and 2,2-dimethyl-1,3-propanediol monomers and their biodegradability. Journal of Polymer and the Environment, 18, 188–195. doi:10.1007/s10924-010-0189-9.

    Article  CAS  Google Scholar 

  15. Asha, S., Mathew, K., Sreenivasan, P. V., Mohanan, T. V., & Kumary, M. M. (2006). Polyurethane degradation in the biological milieu. Trends in Biomaterials and Artificial Organs, 19, 115–121.

    Google Scholar 

  16. Elizabeth, M., Christenson, J., & Anderson, A. (2005). Antioxidant inhibition of poly(carbonate urethane) in vivo biodegradation. Journal of Biomedical Materials, 76, 480–490. doi:10.1002/jbm.a.30506.

    Google Scholar 

  17. Santerre, J. P., & Labow, R. S. (1997). The effect of hard segment size on the hydrolytic stability of polyether-urea-urethanes when exposed to cholesterol esterase. Journal of Biomedical Materials, 36, 223–232. doi:10.1002/(SICI)1097-4636(199708)36:2<223::AID-JBM11>3.0.CO;2-H.

    Article  CAS  Google Scholar 

  18. Rafiemanzelat, F., & Abdollahi, E. (2010). Synthesis and characterization of hydrolysable poly(ether-urethane-urea)s derived from L-leucine anhydride cyclopeptide; a green synthetic method for monomer. Polymer Degradation and Stability, 95, 901–911. doi:10.1016/j.polymdegradstab.2010.03.030.

    Article  CAS  Google Scholar 

  19. Rafiemanzelat, F., Fathollahi Zonouz, A., & Emtiazi, G. (2013). Synthesis of new poly(ether-urethane-urea)s based on amino acid cyclopeptide and PEG: study of their environmental degradation. Amino Acids, 44, 449–459. doi:10.1007/s00726-012-1353-4.

    Article  CAS  Google Scholar 

  20. Rafiemanzelat, F., Fathollahi Zonouz, A., & Emtiazi, G. (2012). Synthesis and characterization of poly(ether-urethane)s derived from 3,6-diisobutyl-2,5-diketopiperazine and PTMG and study of their degradability in environment. Polymer Degradation and Stability, 97, 72–80. doi:10.1016/j.polymdegradstab.2011.10.009.

    Article  CAS  Google Scholar 

  21. Correlo, V. M., Pinho, E. D., Pashkuleva, I., Bhattacharya, M., Neves, N. M., & Reis, R. L. (2007). Water absorption and degradation characteristics of chitosan-based, polyesters and hydroxyapatite composites. Macromolecular Bioscience, 7, 354–363. doi:10.1002/mabi.200600233.

    Article  CAS  Google Scholar 

  22. Reis, R. L., Julio San Román, J. S., (2005). Biodegradable systems in tissue engineering and regenerative medicine. CRC Press LLC, Ch 12, 0-8493-1936-6/05/$0.00+$1.50.

Download references

Acknowledgments

The financial support of this work by Research Affairs Division University of Isfahan (UI) is gratefully acknowledged. We also extend our special thanks to Miss Shahrzad Dehghanfar, M.S. student of Department of Biology, Microbiology Division, and Dr. Delaram Fallahi for the useful help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatemeh Rafiemanzelat or Giti Emtiazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiemanzelat, F., Jafari, M. & Emtiazi, G. Study of Biological Degradation of New Poly(Ether-Urethane-Urea)s Containing Cyclopeptide Moiety and PEG by Bacillus amyloliquefaciens Isolated from Soil. Appl Biochem Biotechnol 177, 842–860 (2015). https://doi.org/10.1007/s12010-015-1782-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1782-0

Keywords

Navigation