Skip to main content

Advertisement

Log in

The Antimicrobial Activity of an Acidic Phospholipase A2 (NN-XIa-PLA2) from the Venom of Naja naja naja (Indian Cobra)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial resistance against antibiotics is considered as a potentially serious threat to public health. Therefore, there is much interest in developing new molecules with novel modes of action. In this study, when antimicrobial potential of an acidic protein—NN-XIa-PLA2 (Naja naja venom phospholipase A2 fraction—XIa) of N. naja venom was evaluated, it demonstrated potent bactericidal action against the human pathogenic strains. It inhibited more significantly, the gram-positive bacteria, when compared to gram-negative bacteria. The minimum inhibitory concentration (MIC) values ranged from 17 to 20 μg/ml. It was interesting to observe that the NN-XIa-PLA2 showed comparable antibacterial activity to the standard antibiotics used. It was found that there was a strong correlation between phospholipase A2 (PLA2) activities, hemolytic, and antimicrobial activity. Further, it is found that in the presence of p-bromophenacyl bromide (p-BPB), there is a significant decrease in enzymatic activity and associated antimicrobial activities, suggesting that a strong correlation exists between catalytic activity and antimicrobial effects, which thereby destabilize the membrane bilayer. However, other mechanisms cannot be completely ruled out. Thus, these studies encourage further in-depth study on molecular mechanisms of antibacterial properties and thereby help in development of this protein into a possible therapeutic lead molecule for treating bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Norrby, S. R., Nord, C. E., Finch, R., & European Society of Clinical Microbiology and Infectious Diseases. (2005). Lack of development of new antimicrobial drugs: a potential serious threat to public health. The Lancet Infectious Diseases, 5, 115–119.

    Article  Google Scholar 

  2. Choudhury, R., Panda, S., & Singh, D. V. (2012). Emergence and dissemination of antibiotic resistance: a global problem. Indian Journal of Medical Microbiology, 30, 384–390.

    Article  CAS  Google Scholar 

  3. Echols, R. M. (2012). A long and winding road; evolution of antimicrobial drug development—crisis management. Expert Review of Anti-Infective Therapy, 10, 1311–1319.

    Article  CAS  Google Scholar 

  4. Ghafur, A. (2013). The Chennai Declaration: a solution to the antimicrobial resistance problem in the Indian subcontinent. Clinical Infectious Diseases, 56, 1190.

    Article  Google Scholar 

  5. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395.

    Article  CAS  Google Scholar 

  6. Samy, R. P., Gopalakrishnakone, P., Stiles, B. G., Girish, K. S., Swamy, S. N., Hemshekhar, M., Tan, K. S., Rowan, E. G., Sethi, G., & Chow, V. T. (2012). Snake venom phospholipases A(2): a novel tool against bacterial diseases. Current Medicinal Chemistry, 19, 6150–6162.

    Article  CAS  Google Scholar 

  7. Perumal Samy, R., Pachiappan, A., Gopalakrishnakone, P., Thwin, M. M., Hian, Y. E., et al. (2006). In vitro antimicrobial activity of natural proteins and animal venoms tested against Burkholderia pseudomallei. BMC Infectious Diseases, 6, 1–16.

    Article  Google Scholar 

  8. Kini, R. M. (1997). Phospholipase A2: a complex multifunctional protein puzzle. In R. M. Kini (Ed.), Venom phospholipase A 2 enzymes: structure, function and mechanism (p. 1228). Chichester: John Wiley & Sons.

    Google Scholar 

  9. Gutiérrez, J. M., & Lomonte, B. (2013). Phospholipase A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon, 62, 27–39.

    Article  Google Scholar 

  10. Soares, A. M., Mancin, A. C., Cecchini, A. L., Arantes, E. C., Franca, S. C., et al. (2001). Effects of chemical modifications of croprotein B, the phospholipase A2 subunit of croprotein from Crotalus durissus terrificus snake venom, on its enzymatic and pharmacological activities. International Journal of Biochemistry and Cell Biology, 33, 877–888.

    Article  CAS  Google Scholar 

  11. Toyama, M. H., de Oliveira, D. G., Beriam, L. O. S., Novello, J. C., Rodrigues-Simioni, L., et al. (2003). Structural, enzymatic and biological properties of new PLA2 isoform from Crotalus durissus terrificus venom. Toxicon, 41, 1033–1038.

    Article  CAS  Google Scholar 

  12. Sampaio, S. C., Brigatte, P., Sousa-e-Silva, M. C. C., dos-Santos, E. C., Rangel-Santos, A. C., et al. (2003). Contribution of croprotein for the inhibitory effect of Crotalus durissus terrificus snake venom on macrophage function. Toxicon, 41, 899–907.

    Article  CAS  Google Scholar 

  13. Paramo, L., Lomonte, B., Pizarro-Cerda, J., Bengoechea, J. A., Gorvel, J. P., & Moreno, E. (1998). Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom: synthetic Lys49 myotoxin II-(115e129)-peptide identifies its bactericidal region. European Journal of Biochemistry, 253, 452–461.

    Article  CAS  Google Scholar 

  14. Vargas, L. J., Londoño, M., Quintana, J. C., Rua, C., Segura, C., et al. (2012). An acidic phospholipase A2 with antibacterial activity from Porthidium nasutum snake venom. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 161, 341–347.

    Article  CAS  Google Scholar 

  15. Soares, A. M., Andrião-Escarso, S. H., Bortoleto, R. K., Rodrigues-Simioni, L., Arni, R. K., et al. (2001). Dissociation of enzymatic and pharmacological properties of piratoxins-I and -III, two myotoxic phospholipases A2 from Bothrops pirajai snake venom. Archives of Biochemistry and Biophysics, 387, 188–196.

    Article  CAS  Google Scholar 

  16. Nair, D. G., Fry, B. G., Alewood, P., Kumar, P. P., & Kini, R. M. (2007). Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins. Biochemistry Journal, 402, 93–104.

    Article  CAS  Google Scholar 

  17. Perumal Samy, R., Gopalakrishnakone, P., Bow, H., Puspharaj, P. N., & Chow, V. T. (2010). Identification and characterization of a phospholipase A2 from the venom of the Saw-scaled viper: novel bactericidal and membrane damaging activities. Biochimie, 92, 1854–1866.

    Article  CAS  Google Scholar 

  18. Pereira, H. A. (2006). Novel therapies based on cationic antimicrobial peptides. Current Pharmaceutical Biotechnology, 7, 229–234.

    Article  CAS  Google Scholar 

  19. de Oliveira Junior, N. G., e Silva Cardoso, M. H., & Franco, O. L. (2013). Snake venoms: attractive antimicrobial proteinaceous compounds for therapeutic purposes. Cellular and Molecular Life Sciences, 70, 4645–4658.

    Article  Google Scholar 

  20. Mukherjee, A. K., & Maity, C. R. (2002). Biochemical composition, lethality and pathophysiology of venom from two cobras—Naja naja and N. kaouthia. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 131, 125–132.

    Article  CAS  Google Scholar 

  21. Shashidharamurthy, R., Jagadeesha, D. K., Girish, K. S., & Kemparaju, K. (2002). Variations in biochemical and pharmacological properties of Indian cobra (Naja naja naja) venom due to geographical distribution. Molecular and Cellular Biochemistry, 229, 93–101.

    Article  CAS  Google Scholar 

  22. Dhananjaya, B. L., Nataraju, A., Rajesh, R., Raghavendra Gowda, C. D., Sharath, B. K., Vishwanath, B. S., & D’Souza, C. J. (2006). Anticoagulant effect of Naja naja venom 5′ nucleotidase: demonstration through the use of novel specific inhibitor, vanillic acid. Toxicon, 48, 411–421.

    Article  CAS  Google Scholar 

  23. Shashidharamurthy, R., Mahadeswaraswamy, Y. H., Ragupathi, L., Vishwanath, B. S., & Kemparaju, K. (2010). Systemic pathological effects induced by cobra (Naja naja) venom from geographically distinct origins of Indian peninsula. Experimental and Toxicologic Pathology, 62, 587–592.

    Article  CAS  Google Scholar 

  24. Hiremath, V., Yariswamy, M., Nanjaraj Urs, A. N., Joshi, V., Suvilesh, K. N., Ramakrishnan, C., Nataraju, A., & Vishwanath, B. S. (2013). Differential action of Indian BIG FOUR snake venom toxins on blood coagulation. Toxin Reviews, 1, 1–10.

    Google Scholar 

  25. Rudrammaji, L. M., & Gowda, T. V. (1998). Purification and characterization of three acidic, cytotoxic phospholipase A2 from Indian cobra (Naja naja) venom. Toxicon, 36, 921–932.

    Article  CAS  Google Scholar 

  26. Condrea, E., Fletcher, J. E., Rapuano, B. E., Yang, C. C., & Rosenberg, P. (1981). Effect of modification of one histidine residue on the enzymatic and pharmacological properties of a toxic phospholipase A2 from Naja nigricollis snake venom and less toxic phospholipases A2 from Hemachatus haemachatus and Naja naja atra snake venoms. Toxicon, 19, 61–71.

    Article  CAS  Google Scholar 

  27. Bhat, M. K., & Gowda, T. V. (1989). Purification and characterization of a myotoxic phospholipase A2 from Indian cobra (Naja naja naja) venom. Toxicon, 27, 861–873.

    Article  CAS  Google Scholar 

  28. Boman, H. G., & Kaletta, U. (1957). Chromatography of rattlesnake venom, a separation of three phosphodiesterases. Biochimica et Biophysica Acta, 24, 619–631.

    Article  CAS  Google Scholar 

  29. Dhananjaya, B. L., Zameer, F., Girish, K. S., & D’Souza, C. J. (2011). Anti-venom potential of aqueous extract of stem bark of Mangifera indica L. against Daboia russelii (Russell’s viper) venom. Indian Journal of Biochemistry and Biophysics, 48, 175–183.

    CAS  Google Scholar 

  30. Forbes, B. A., Sahm, D. F., Weissfeld, A. S., & Trevino, E. A. (1990). In E. J. Baron, L. R. Petrson, & S. M. Finegold (Eds.), Bailey and Scott’s diagnostics microbiology (pp. 171–194). St. Louis: Mosby Co.

    Google Scholar 

  31. Prescot, L. M., Harley, J. P., & Klein, D. A. (1996). Introduction to microbiology (5th ed., pp. 681–684). San Francisco: The Benjamin Cummins Publishing Co. Inc.

  32. Mylarappa, B. N., Dhananjaya, B. L., Dinesha, R., Harsha, R., & Srinivas, L. (2010). Potent antibacterial property of APC protein from curry leaves (Murraya koenigii L.). Food Chemistry, 118, 747–750.

    Article  Google Scholar 

  33. Buckland, A., & Wilton, D. (2000). The antibacterial properties of secreted phospholipases A2. Biochimica et Biophysica Acta, 1488, 71–82.

    Article  CAS  Google Scholar 

  34. Rudrammaji, L. M., Machiah, K. D., Kantha, T. P., & Gowda, T. V. (2001). Role of catalytic function in the antiplatelet activity of phospholipase A2 cobra (Naja naja naja) venom. Molecular and Cellular Biochemistry, 219, 39–44.

    Article  CAS  Google Scholar 

  35. Park, C. B., Kim, H. S., & Kim, S. C. (1998). Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochemical and Biophysical Research Communications, 244, 253–257.

    Article  CAS  Google Scholar 

  36. Shen, Z., & Cho, W. (1995). Highly efficient immobilization of phospholipase A2 and its biomedical applications. Journal of Lipid Research, 36, 1147–1151.

    CAS  Google Scholar 

  37. Saikia, D., Bordoloi, N. K., Chattopadhyay, P., Choklingam, S., Ghosh, S. S., & Mukherjee, A. K. (2012). Differential mode of attack on membrane phospholipids by an acidic phospholipase A2 (RVVA-PLA2-I) from Daboia russelli venom. Biochimica et Biophysica Acta, 1818, 3149–3157.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

DBL thanks Jain University for the constant encouragement given to progress in research. DBL acknowledge DST (department of Science and Technology), Govt of India for the grant INT/SLP/P-007/2012. SS and DBL acknowledge the Adichunchanagiri Mahasamstana Mutt and Shikshana Trust for providing facilities in the Adichunchanagiri Biotechnology and Cancer Research Institute (ABCRI). We thank Balagangadharanatha Swamiji Institute for Technology (BGS-IT) and Sri Adichunchangiri College of Pharmacy for the support to carry out the research.

Conflict of Interest

The authors declare that they have no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Dhananjaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudarshan, S., Dhananjaya, B.L. The Antimicrobial Activity of an Acidic Phospholipase A2 (NN-XIa-PLA2) from the Venom of Naja naja naja (Indian Cobra). Appl Biochem Biotechnol 176, 2027–2038 (2015). https://doi.org/10.1007/s12010-015-1698-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1698-8

Keywords

Navigation