Skip to main content
Log in

Molecular Characterization of a Recombinant Zea mays Phenylalanine Ammonia-Lyase (ZmPAL2) and Its Application in trans-Cinnamic Acid Production from l-Phenylalanine

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Phenylalanine ammonia-lyase (PAL) is one of the most extensively studied enzymes with its crucial role in secondary phenylpropanoid metabolism of plants. Recently, its demand has been increased for aromatic chemical production, but its applications in trans-cinnamic acid production were not much explored. In the present study, a putative PAL gene from Zea mays designated as ZmPAL2 was expressed and characterized in Escherichia coli BL21 (DE3). The recombinant ZmPAL2 exhibited a high PAL activity (7.14 U/mg) and a weak tyrosine ammonia-lyase activity. The optimal temperature of ZmPAL2 was 55 °C, and the thermal stability results showed that about 50 % of enzyme activity remained after a treatment at 60 °C for 6 h. The recombinant ZmPAL2 is a good candidate for the production of trans-cinnamic acid. The vitro conversion indicated that the recombinant ZmPAL2 could effectively catalyze the l-phenylalanine to trans-cinnamic acid, and the trans-cinnamic acid concentration can reach up to 5 g/l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cui, J. D., Qiu, J. Q., Fan, X. W., Jia, S. R., & Tan, Z. L. (2014). Biotechnological production and applications of microbial phenylalanine ammonia lyase: a recent review. Critical Reviews in Biotechnology, 34, 258–268.

    Article  CAS  Google Scholar 

  2. Fritz, R. R., Hodgns, D. S., & Abell, C. W. (1976). Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals. Journal of Biological Chemistry, 251, 4646–4650.

    CAS  Google Scholar 

  3. Tanaka, Y., Matsuoka, M., Yamanoto, N., Ohashi, Y., Kano-Murakami, Y., & Ozeki, Y. (1989). Structure and characterization of a cDNA clone for phenylalanine ammonia-lyase from cut-injured roots of sweet potato. Plant Physiology, 90, 1403–1407.

    Article  CAS  Google Scholar 

  4. Hahlbrock, K., & Scheel, D. (1989). Physiology and molecular biology of phenylpropanoid metabolism. Annual Review of Plant Biology, 40, 347–369.

    Article  CAS  Google Scholar 

  5. Dixon, R. A., & Palva, N. L. (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell, 7, 1085–1097.

    Article  CAS  Google Scholar 

  6. Marusich, W. C., Jensen, R. A., & Zamir, L. O. (1981). Induction of L-phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source in Rhodotorula glutinis. Journal of Bacteriology, 146, 1013–1019.

    CAS  Google Scholar 

  7. Koukol, J., & Conn, E. E. (1961). The metabolism of aromatic compounds in higher plants. Journal of Biological Chemistry, 236, 2692–2698.

    CAS  Google Scholar 

  8. Aydas, S. B., Ozturk, S., & Aslim, B. (2013). Phenylalanine ammonia lyase (PAL) enzyme activity and antioxidant properties of some cyanobacteria isolates. Food Chemistry, 136, 164–169.

    Article  Google Scholar 

  9. Moffitt, M. C., Louie, G. V., Bowman, M. E., Pence, J., Noel, J. P., & Moore, B. S. (2007). Discovery of two cyanobacterial phenylalanine ammonia lyases: kinetic and structural characterization. Biochemistry, 46, 1004–1012.

    Article  CAS  Google Scholar 

  10. Cochrane, F. C., Davin, L. B., & Lewis, N. G. (2004). The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry, 65, 1557–1564.

    Article  CAS  Google Scholar 

  11. Wang, L., Gamez, A., Archer, H., Abola, E. E., Sarkissian, C. N., Fitzpatrick, P., Wendt, D., Zhang, Y., Vellard, M., Bliesath, J., Bell, S. M., Lemontt, J. F., Scriver, C. R., & Stevens, R. C. (2008). Structural and biochemical characterization of the therapeutic Anabaena variabilis phenylalanine ammonia lyase. Journal of Molecular Biology, 380, 623–635.

    Article  CAS  Google Scholar 

  12. Jaliani, H. Z., Farajnia, S., Mohammadi, S. A., Barzegar, A., & Talebi, S. (2013). Engineering and kinetic stabilization of the therapeutic enzyme Anabeana variabilis phenylalanine ammonia lyase. Applied Biochemistry and Biotechnology, 171, 1805–1818.

    Article  CAS  Google Scholar 

  13. Louie, G. V., Bowman, M. E., Moffitt, M. C., Baiga, T. J., Moore, B. S., & Noel, J. P. (2006). Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases. Chemistry & Biology, 13, 1327–1338.

    Article  CAS  Google Scholar 

  14. Logemann, E., Parniske, M., & Hahlbrock, K. (1995). Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proceedings of the National Academy of Sciences, 92, 5905–5909.

    Article  CAS  Google Scholar 

  15. Song, J., & Wang, Z. (2009). Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Molecular Biology Reports, 36, 939–952.

    Article  CAS  Google Scholar 

  16. Xu, F., Deng, G., Cheng, S., Zhang, W., Huang, X., Li, L., Cheng, H., Rong, X., & Li, J. (2012). Molecular cloning, characterization and expression of the phenylalanine ammonia-lyase gene from Juglans regia. Molecules, 17, 7810–7823.

    Article  CAS  Google Scholar 

  17. Xiang, L. K., & Moore, B. S. (2005). Biochemical characterization of a prokaryotic phenylalanine ammonia lyase. Journal of Bacteriology, 187, 4286–4289.

    Article  CAS  Google Scholar 

  18. Ma, W., Wu, M., Wu, Y., Ren, Z., & Zhong, Y. (2013). Cloning and characterisation of a phenylalanine ammonia-lyase gene from Rhus chinensis. Plant Cell Reports, 32, 1179–1190.

    Article  CAS  Google Scholar 

  19. Hsieh, L. S., Hsieh, Y. L., Yeh, C. S., Cheng, C. Y., Yang, C. C., & Lee, P. D. (2011). Molecular characterization of a phenylalanine ammonia-lyase gene (BoPAL1) from Bambusa oldhamii. Molecular Biology Reports, 38, 283–290.

    Article  CAS  Google Scholar 

  20. Hsieh, L. S., Ma, G. J., Yang, C. C., & Lee, P. D. (2010). Cloning, expression, site-directed mutagenesis and immunolocalization of phenylalanine ammonia-lyase in Bambusa oldhamii. Phytochemistry, 71, 1999–2009.

    Article  CAS  Google Scholar 

  21. Cui, J. D., Zhang, S., & Sun, L. M. (2012). Cross-linked enzyme aggregates of phenylalanine ammonia lyase: novel biocatalysts for synthesis of L-phenylalanine. Applied Biochemistry and Biotechnology, 167, 835–844.

    Article  CAS  Google Scholar 

  22. Jia, S. R., Cui, J. D., Li, Y., & Sun, A. Y. (2008). Production of L-phenylalanine from trans-cinnamic acids by high-level expression of phenylalanine ammonia lyase gene from Rhodosporidium toruloides in Escherichia coli. Biochemical Engineering Journal, 42, 193–197.

    Article  CAS  Google Scholar 

  23. Zhu, L. B., Cui, W. J., Fang, Y. Q., Liu, Y., Gao, X. X., & Zhou, Z. M. (2013). Cloning, expression and characterization of phenylalanine ammonia-lyase from Rhodotorula glutinis. Biotechnology Letters, 35, 751–756.

    Article  CAS  Google Scholar 

  24. Alejandra, V. T., Martinez, L. M., Hernandez-Chavez, G., Rocha, M., Martinez, A., Bolivar, F., & Gosset, G. (2015). Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli. Microbial Cell Factories, 14, 6.

    Article  Google Scholar 

  25. Gao, Z. M., Wang, X. C., Peng, Z. H., Zheng, B., & Liu, Q. (2012). Characterization and primary functional analysis of phenylalanine ammonia-lyase gene from Phyllostachys edulis. Plant Cell Reports, 31, 1345–1356.

    Article  CAS  Google Scholar 

  26. Babich, O. O., Pokrovsky, V. S., Anisimova, N. Y., Sokolov, N. N., & Prosekov, A. Y. (2013). Recombinant L-phenylalanine ammonia lyase from Rhodosporidium toruloides as a potential anticancer agent. Biotechnology and Applied Biochemistry, 60, 316–322.

    Article  CAS  Google Scholar 

  27. Hyun, M. W., Yun, Y. H., Kim, J. Y., & Kim, S. H. (2011). Fungal and plant phenylalanine ammonia-lyase. Microbiology, 39, 257–265.

    CAS  Google Scholar 

  28. Li, C. L., Bai, Y. C., Chen, H., Zhao, H. X., Shao, J. R., & Wu, Q. (2012). Cloning, characterization and functional analysis of a phenylalanine ammonia-lyase gene (FtPAL) from Fagopyrum tataricum Gaertn. Plant Molecular Biology Reporter, 30, 1172–1182.

    Article  Google Scholar 

  29. Hu, G. S., Jia, J. M., Hur, Y. J., Chung, Y. S., Lee, J. H., Yun, D. J., Chung, W. S., Yi, G. H., Kim, T. H., & Kim, D. H. (2011). Molecular characterization of phenylalanine ammonia lyase gene from Cistanche deserticola. Molecular Biology Reports, 38, 3741–3750.

    Article  CAS  Google Scholar 

  30. Rosler, J., Krekel, F., Amrhein, N., & Schmid, J. (1997). Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiology, 113, 175–179.

    Article  CAS  Google Scholar 

  31. Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94, 223–253.

    Article  CAS  Google Scholar 

  32. Hoskins, J. A. (1984). The occurrence, metabolism and toxicity of cinnamic acid and related compounds. Journal of Applied Toxicology, 4, 283–292.

    Article  CAS  Google Scholar 

  33. Miyamoto, K., Sasaki, M., Minamisawa, Y., Kurahashi, Y., Kano, H., & Ishikawa, S. (2004). Evaluation of in vivo biocompatibility and biodegradation of photocrosslinked hyaluronate hydrogels (HADgels). Journal of Biomedical Materials Research. Part A, 70, 550–559.

    Article  Google Scholar 

  34. Edwards, M., Rourk, P. M., Riby, P. G., & Mendham, A. P. (2014). Not quite the last word on the Perkin reaction. Tetrahedron, 70, 7245–7252.

    Article  CAS  Google Scholar 

  35. Wall, V. M., Eisenstadt, A., Ager, D. J., & Laneman, S. A. (1999). The Heck reaction and cinnamic acid synthesis by heterogeneous catalysis. Platinum Metals Review, 43, 138–145.

    CAS  Google Scholar 

  36. Mitra, A. K., De, A., & Karchaudhuri, N. (1999). Application of microwave irradiation techniques for the syntheses of cinnamic acids by Doebner condensation. Synthetic Communications, 29, 573–581.

    Article  CAS  Google Scholar 

  37. Nijkamp, K., Van Luijk, N., DeBont, J. A., & Wery, J. (2005). The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose. Applied Microbiology and Biotechnology, 69, 170–177.

    Article  CAS  Google Scholar 

  38. Noda, S., Miyazaki, T., Miyoshi, T., Miyake, M., Okai, N., Tanaka, T., Ogino, C., & Kondo, A. (2011). Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase. Journal of Industrial Microbiology & Biotechnology, 38, 643–648.

    Article  CAS  Google Scholar 

  39. Hsieh, L. S., Yeh, C. S., Pan, H. C., Cheng, C. Y., Yang, C. C., & Lee, P. D. (2010). Cloning and expression of a phenylalanine ammonia-lyase gene (BoPAL2) from Bambusa oldhamii in Escherichia coli and Pichia pastoris. Protein Expression and Purification, 71, 224–230.

    Article  CAS  Google Scholar 

  40. Kyndt, J. A., Meyer, T. E., Cusanovich, M. A., & Van Beeumen, J. J. (2002). Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Letters, 512, 240–244.

    Article  CAS  Google Scholar 

  41. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  42. MacDonald, M. J., & D'Cunha, G. B. (2007). A modern view of phenylalanine ammonia lyase. Biochemistry and Cell Biology, 85, 273–282.

    Article  CAS  Google Scholar 

  43. Xue, Z., McCluskey, M., Cantera, K., Sariaslani, F. S., & Huang, L. (2007). Identification, characterization and functional expression of a tyrosine ammonia-lyase and its mutants from the photosynthetic bacterium Rhodobacter sphaeroides. Journal of Industrial Microbiology & Biotechnology, 34, 599–604.

    Article  CAS  Google Scholar 

  44. Bartsch, S., & Bornscheuer, U. T. (2010). Mutational analysis of phenylalanine ammonia lyase to improve reactions rates for various substrates. Protein Engineering Design and Selection, 23, 929–933.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31200443), Program for New Century Excellent Talents in University (NCET-11-0988), and Excellent Youth Foundation of Jiangsu Province of China (BK2012038). The authors are also grateful to National Science and Technology Support Program (2012BAD32B06) and PAPD for partial funding of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Ouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, Y., Jiang, T., Cong, Y. et al. Molecular Characterization of a Recombinant Zea mays Phenylalanine Ammonia-Lyase (ZmPAL2) and Its Application in trans-Cinnamic Acid Production from l-Phenylalanine. Appl Biochem Biotechnol 176, 924–937 (2015). https://doi.org/10.1007/s12010-015-1620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1620-4

Keywords

Navigation