Skip to main content
Log in

Wheat Dehydrin K-Segments Ensure Bacterial Stress Tolerance, Antiaggregation and Antimicrobial Effects

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dehydrins are a group of plant proteins that have been shown to be involved in the tolerance of various abiotic stresses such as dehydration, salinity, and low temperature. We have previously shown that the K-segments of the wheat dehydrin DHN-5 are essential for the protection of enzyme activities in vitro. In this study, we further investigate the role of the K-segments in the growth of Escherichia coli under various stresses, and we tested their antibacterial and antifungal activities. Our results showed that the truncated forms of DHN-5 containing the two K-segments enhanced tolerance of E. coli against diverse stresses by protecting proteins against aggregation. In addition, we demonstrated that the K-segments have antibacterial and antifungal activities against Gram-positive and Gram-negative bacteria and fungi. Based on these results, we propose that the K-segments may play a protective role in plants not only under abiotic stress conditions but also most likely during defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dunker, A. K., Obradovic, Z., Romero, P., Garner, E. C., & Brown, C. J. (2000). Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Information, 11, 161–171.

    CAS  Google Scholar 

  2. Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., & Masmoudi, K. (2011). Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signaling & Behavior, 6, 1–7.

    Article  Google Scholar 

  3. Kovacs, B., & Tompa, P. (2012). Diverse functional manifestations of intrinsic structural disorder in molecular chaperones. Biochemical Society Transaction, 4, 963–968.

    Article  Google Scholar 

  4. Tompa, P., Szász, C., & Buday, L. (2005). Structural disorder throws new light on moonlighting. Trends in Biochemical Sciences, 30, 484–489.

    Article  CAS  Google Scholar 

  5. Battaglia, M., & Covarrubias, A. (2013). Late Embryogenesis Abundant (LEA) proteins in legumes. Frontiers of Plant Science, 4, 190.

    Article  CAS  Google Scholar 

  6. Close, T. J. (1996). Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Plant Physiology, 97, 795–803.

    Article  CAS  Google Scholar 

  7. Riera, M., Peracchia, G., de-Nadal, E., Arino, J., & Pagès, M. (2001). Maize protein kinase CK2: regulation and functionality of three regulatory subunits. Plant Journal, 25, 365–374.

    Article  CAS  Google Scholar 

  8. Plana, M., Itarte, E., Goday, A., Pagès, M., & Martinez, M. C. (1991). Phosphorylation of maize Rab17 protein by casein kinase 2. Journal of Biological Chemistry, 266, 22510–22514.

    CAS  Google Scholar 

  9. Alsheikh, M. K., Heyen, B. J., & Randall, S. K. (2003). Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. Journal of Biological Chemistry, 278, 40882–40889.

    Article  CAS  Google Scholar 

  10. Goday, A., Jensen, A. B., Culianez-Macia, F. A., Alba, M. M., Figueras, M., Serratosa, J., Torrent, M., & Pages, M. (1994). The maize abscissic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell, 6, 351–360.

    Article  CAS  Google Scholar 

  11. Close, T. J., Kortt, A. A., & Chandler, P. M. (1989). A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Molecular Biology, 13, 95–108.

    Article  CAS  Google Scholar 

  12. Drira, M., Saibi, W., Brini, F., Gargouri, A., Masmoudi, K., & Hanin, M. (2013). The K-segments of the wheat dehydrin DHN-5 are essential for the protection of lactate dehydrogenase and β-glucosidase activities in vitro. Molecular Biotechnology, 54, 643–650.

    Article  CAS  Google Scholar 

  13. Hughes, S., & Graether, S. P. (2011). Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Science, 20, 42–50.

    Article  CAS  Google Scholar 

  14. Rahman, L. N., Chen, L., Nazim, S., Bamm, V. V., Yaish, M. W., Moffatt, B. A., Dutcher, J. R., & Harauz, G. (2010). Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes-synergistic effects of lipid composition and temperature on secondary structure. Biochemistry and Cell Biology, 88, 791–807.

    Article  CAS  Google Scholar 

  15. Eriksson, S. K, & Harryson, P. (2011). Dehydrins: molecular biology, structure and function. Plant Desiccation Tolerance, 289–305.

  16. Liu, G., Xu, H., Zhang, L., & Zheng, Y. (2011). Fe binding properties of two soybean (Glycine max L.) LEA4 proteins associated with antioxidant activity. Plant Cell Physiology, 52(6), 994–1002.

    Article  CAS  Google Scholar 

  17. Chakrabortee, S., Tripathi, R., Watson, M., Schierle, G. S. K., Kurniawan, D. P., Kaminski, C. F., Wise, M. J., & Tunnacliffe, A. (2012). Intrinsically disordered proteins as molecular shields. Molecular Biosystems, 8, 210–219.

    Article  CAS  Google Scholar 

  18. Brini, F., Saibi, W., Amara, I., Gargouri, A., Masmoudi, K., & Hanin, M. (2010). The wheat dehydrin DHN-5 exerts a heat protective effect on ß-glucosidase and glucose oxidase activities. Bioscience Biotechnology and Biochemistry, 74, 1050–1054.

    Article  CAS  Google Scholar 

  19. Bhardwaj, R., Sharma, I., Kanwar, M., Sharma, R., Handa, N., Kaur, H., Kapoor, D., & Poonam. (2013). LEA proteins in salt stress tolerance. In P. Ahmad, M. M. Azooz, & M. N. V. Prasad (Eds.), Salt stress in plants (pp. 79–112). New York: Springer.

    Chapter  Google Scholar 

  20. Lan, Y., Cai, D., & Zheng, Y. (2005). Expression in Escherichia coli of three different soybean late embryogenesis abundant (LEA) genes to investigate enhanced stress tolerance. Journal of Integrated Plant Biology, 47, 613–621.

    Article  CAS  Google Scholar 

  21. Zhang, L., Ohta, A., Takagi, M., & Imai, R. (2000). Expression of plant group 2 and group 3 LEA genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. Journal of Biochemistry (Tokyo), 127, 611–616.

    Article  CAS  Google Scholar 

  22. Campos, F., Zamudio, F., & Covarrubias, A. A. (2006). Two different late embryogenesis abundant proteins from Arabidopsis thaliana contain specific domains that inhibit Escherichia coli growth. Biochemical and Biophysical Research Communications, 342, 406–413.

    Article  CAS  Google Scholar 

  23. Zhai, C., Lan, J., Wang, H., Li, L., Cheng, X., & Liu, G. (2011). Rice dehydrin Ksegments have in vitro antibacterial activity. Biochemistry (Mosc), 76, 645–650.

    Article  CAS  Google Scholar 

  24. Brini, F., Hanin, M., Lumbreras, V., Amara, I., Khoudi, H., Hassairi, A., Pagès, M., & Masamoudi, K. (2007). Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Report, 26, 2017–2026.

    Article  CAS  Google Scholar 

  25. Brini, F., Yamamoto, A., Jlaiel, L., Takeda, S., Hobo, T., Dinh, H. Q., Hattori, T., Masmoudi, K., & Hanin, M. (2011). Pleiotropic effects of the wheat dehydrin DHN-5 on stress responses in Arabidopsis. Plant Cell Physiology, 52(4), 676–688.

    Article  CAS  Google Scholar 

  26. Gupta, K., Agarwal, P., Reddy, M., & Jha, B. (2010). SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Report, 29, 1131–1137.

    Article  CAS  Google Scholar 

  27. Amara, I., Odena, A., Oliveira, E., Moreno, A., Masmoudi, K., Pagès, M., & Goday, A. (2012). Insights into maize LEA proteins: from proteomics to functional approaches. Plant Cell Physiology, 53, 312–329.

    Article  CAS  Google Scholar 

  28. He, S., Tan, L., Hu, Z., Chen, G., Wang, G., & Hu, T. (2012). Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L. Molecular Genetics and Genomics, 287, 39–54.

    Article  CAS  Google Scholar 

  29. Liu, Y., Zheng, Y., Zhang, Y., Wang, W., & Li, R. (2010). Soybean PM2 protein (LEA3) confers the tolerance of Escherichia coli and stabilization of enzyme activity under diverse stresses. Current Microbiology, 60, 373–378.

    Article  CAS  Google Scholar 

  30. Chakrabortee, S., Boschetti, C., Walton, L. J., Sarkar, S., Rubinsztein, D. C., & Tunnacliffe, A. (2007). Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proceedings of the National Academy of Sciences USA, 104, 18073–18078.

    Article  CAS  Google Scholar 

  31. Tagg, J. R., & Mcgiven, A. R. (1971). Assay systems for bacteriocins. Applied and Environmental Microbiology, 21, 943–947.

    CAS  Google Scholar 

  32. Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48(S1), 5–16.

    Article  CAS  Google Scholar 

  33. Pazos, F., Pietrosemoli, N., García-Martín, J. A., & Solano, R. (2013). Protein intrinsic disorder in plants. Frontiers in Plant Science, 4, 363.

    Article  Google Scholar 

  34. Sun, X., Rikkerink, E. H. A., Jones, W. T., & Uversky, V. N. (2013). Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. Plant Cell, 25, 38–55.

    Article  CAS  Google Scholar 

  35. Dure, L., Crouch, M., Harada, J., Ho, T. H. D., Mundy, J., Quatrano, R., Thomas, T., & Sung, Z. R. (1989). Common amino acids sequence domains among the LEA proteins of higher plants. Plant Molecular Biology, 12, 475–486.

    Article  CAS  Google Scholar 

  36. Tunnacliffe, A., & Wise, M. J. (2007). The continuing conundrum of the LEA proteins. Naturwissenschaften, 94, 791–812.

    Article  CAS  Google Scholar 

  37. Yang, B., Sugio, A., & White, F. F. (2006). Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proceedings of the National Academy of Sciences USA, 103, 10503–10508.

    Article  CAS  Google Scholar 

  38. Koag, M. C., Wilkens, S., Fenton, R. D., Resnik, J., Vo, E., & Close, T. J. (2009). The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiology, 150, 1503–1514.

    Article  CAS  Google Scholar 

  39. Hughes, S., Schart, V., Malcolmson, J., Hogarth, K., Martynowicz, D. M., Tralman-Baker, E., Patel, S. N., & Graether, S. P. (2013). The importance of size and disorder in the cryoprotective effects of dehydrins. Plant Physiology, 113, 226803.

    Google Scholar 

  40. Pushpanathan, M., Gunasekaran, P., & Rajendhran, J. (2013). Antimicrobial peptides: versatile biological properties. International Journal of Peptides, 2013, 675391.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiçal Brini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drira, M., Saibi, W., Amara, I. et al. Wheat Dehydrin K-Segments Ensure Bacterial Stress Tolerance, Antiaggregation and Antimicrobial Effects. Appl Biochem Biotechnol 175, 3310–3321 (2015). https://doi.org/10.1007/s12010-015-1502-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1502-9

Keywords

Navigation