Skip to main content
Log in

DHEA Alleviates Oxidative Stress of Muscle Cells via Activation of Nrf2 Pathway

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dehydroepiandrosterone (DHEA) has been proposed to regulate muscle dystrophy, while the underlying mechanisms for its protection against muscle atrophy are unknown. The present study was carried out to improve our understanding of the mechanism of DHEA’s protective effect on muscle cells. We observed that DHEA significantly decreased the loss of cell death associated with H2O2-induced toxicity. Pretreating the muscle cells with DHEA led to a reduction of the intracellular accumulation of reactive oxygen species (ROS) in response to H2O2. In addition, DHEA reduced the H2O2-induced phosphorylation of ERK and p38 in a dose-dependent manner. Moreover, DHEA stimulated the activation of Nrf2, which led to the expression of an antioxidant response gene, HO-1. These results suggest that both antioxidants and anti-inflammatory properties mediate DHEA’s effects for protection against muscle atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bodine, S. C., et al. (2001). Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 294, 1704–1708. doi:10.1126/science.1065874.

    Article  CAS  Google Scholar 

  2. Costelli, P., & Baccino, F. M. (2003). Mechanisms of skeletal muscle depletion in wasting syndromes: role of ATP‐ubiquitin‐dependent proteolysis. Current Opinion in Clinical Nutrition and Metabolic Care, 6, 407–412. doi:10.1097/01.mco.0000078984.18774.02.

  3. Reid, M. B., & Li, Y. P. (2001). Cytokines and oxidative signalling in skeletal muscle. Acta Physiologica Scandinavica, 171, 225–232. doi:10.1046/j.1365-201x.2001.00824.x.

    Article  CAS  Google Scholar 

  4. Moylan, J. S., & Reid, M. B. (2007). Oxidative stress, chronic disease, and muscle wasting. Muscle & Nerve, 35, 411–429. doi:10.1002/mus.20743.

    Article  CAS  Google Scholar 

  5. Mantovani, G., et al. (2002). Quantitative evaluation of oxidative stress, chronic inflammatory indices and leptin in cancer patients: correlation with stage and performance status. International Journal of Cancer, 98, 84–91. doi:10.1002/ijc.10143.

    Article  CAS  Google Scholar 

  6. Kang, E. M., et al. (2005). Hematopoietic stem cell transplantation prevents diabetes in NOD mice but does not contribute to significant islet cell regeneration once disease is established. Experimental Hematology, 33, 699–705. doi:10.1016/j.exphem.2005.03.008.

    Article  CAS  Google Scholar 

  7. Sullivan-Gunn, M., & Lewandowski, P. (2013). Elevated hydrogen peroxide and decreased catalase and glutathione peroxidase protection are associated with aging sarcopenia. BMC Geriatrics, 13, 104.

    Article  Google Scholar 

  8. Gomes-Marcondes, M. C. C., Smith, H. J., Cooper, J. C., & Tisdale, M. J. (2002). Development of an in-vitro model system to investigate the mechanism of muscle protein catabolism induced by proteolysis-inducing factor. British Journal of Cancer, 86, 1628–1633.

    Article  CAS  Google Scholar 

  9. Li, P., Oparil, S., Sun, J.-Z., Thompson, J. A. & Chen, Y.-F. (2003). Fibroblast growth factor mediates hypoxia-induced endothelin-A receptor expression in lung artery smooth muscle cells. Journal of Applied Physiology, 95(2), 643–651. doi:10.1152/japplphysiol.00652.2002

  10. Labrie, F. (2010). DHEA, important source of sex steroids in men and even more in women. Progress in brain research 182:97–148. doi:10.1016/S0079-6123(10)82004-7

  11. Tchernof, A., Calles-Escandon, J., Sites, C. K., & Poehlman, E. T. (1998). Menopause, central body fatness, and insulin resistance: effects of hormone-replacement therapy. Coronary Artery Disease, 9, 503–511

    Article  CAS  Google Scholar 

  12. Goldfarb, A. H., McIntosh, M. K., & Boyer, B. T. (1996). Vitamin E attenuates myocardial oxidative stress induced by DHEA in rested and exercised rats. Journal of Applied Physiology, 80(2), 486–490

  13. Mastrocola, R., et al. (2003). Pro-oxidant effect of dehydroepiandrosterone in rats is mediated by PPAR activation. Life Sciences, 73, 289–299. doi:10.1016/S0024-3205(03)00287-X.

    Article  CAS  Google Scholar 

  14. Iwasaki, T., et al. (2005). Marked attenuation of production of collagen type I from cardiac fibroblasts by dehydroepiandrosterone. American Journal of Physiology, Endocrinology and Metabolism, 288(6), E1222–1228. doi:10.1152/ajpendo.00370.2004

  15. Yorek, M. A., et al. (2002). Effect of treatment of diabetic rats with dehydroepiandrosterone on vascular and neural function. American Journal of Physiology, Endocrinology and Metabolism, 283(5), E1067–1075. doi:10.1152/ajpendo.00173.2002

  16. Jang, Y. C., et al. (2010). Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. The FASEB Journal, 24, 1376–1390. doi:10.1096/fj.09-146308.

    Article  CAS  Google Scholar 

  17. Park, S. Y., Kim, J.-H., Lee, S. J., & Kim, Y. (2013). Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells. Toxicology and Applied Pharmacology, 268, 68–78. doi:10.1016/j.taap.2013.01.017.

    Article  CAS  Google Scholar 

  18. Nakaso, K., Ito, S., & Nakashima, K. (2008). Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson’s disease model of SH-SY5Y cells. Neuroscience Letters, 432, 146–150. doi:10.1016/j.neulet.2007.12.034.

    Article  CAS  Google Scholar 

  19. Weilbacher, A., Gutekunst, M., Oren, M., Aulitzky, W. E., & van der Kuip, H. (2014). RITA can induce cell death in p53-defective cells independently of p53 function via activation of JNK/SAPK and p38. Cell Death and Disease, 5, e1318. doi:10.1038/cddis.2014.284.

    Article  CAS  Google Scholar 

  20. Bogoyevitch, M. A., et al. (1996). Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart: p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circulation Research, 79, 162–173. doi:10.1161/01.res.79.2.162.

    Article  CAS  Google Scholar 

  21. Bowie, A. G., & O’Neill, L. A. J. (2000). Vitamin C inhibits NF-κB activation by TNF via the activation of p38 mitogen-activated protein kinase. The Journal of Immunology, 165, 7180–7188. doi:10.4049/jimmunol.165.12.7180.

    Article  CAS  Google Scholar 

  22. Campbell, C. S. G., et al. (2004). The phosphatidylinositol/AKT/atypical PKC pathway is involved in the improved insulin sensitivity by DHEA in muscle and liver of rats in vivo. Life Sciences, 76, 57–70. doi:10.1016/j.lfs.2004.06.017.

    Article  CAS  Google Scholar 

  23. Chua, C. K. Z., Henderson, V. W., Dennerstein, L., Ames, D., & Szoeke, C. (2014). Dehydroepiandrosterone sulfate and cognition in midlife, post-menopausal women. Neurobiology of Aging, 35, 1654–1655. doi:10.1016/j.neurobiolaging.2014.01.140.

    Article  CAS  Google Scholar 

  24. Yoshida, S., et al. (2010). Dehydroepiandrosterone sulfate is inversely associated with sex-dependent diverse carotid atherosclerosis regardless of endothelial function. Atherosclerosis, 212, 310–315. doi:10.1016/j.atherosclerosis.2010.05.011.

    Article  CAS  Google Scholar 

  25. Sinha, M., Saha, A., Basu, S., Pal, K., & Chakrabarti, S. (2010). Aging and antioxidants modulate rat brain levels of homocysteine and dehydroepiandrosterone sulphate (DHEA-S): implications in the pathogenesis of Alzheimer’s disease. Neuroscience Letters, 483, 123–126. doi:10.1016/j.neulet.2010.07.075.

    Article  CAS  Google Scholar 

  26. Traish, A. M., Kang, H. P., Saad, F., & Guay, A. T. (2011). Dehydroepiandrosterone (DHEA)—a precursor steroid or an active hormone in human physiology (CME). The Journal of Sexual Medicine, 8, 2960–2982. doi:10.1111/j.1743-6109.2011.02523.x.

    Article  CAS  Google Scholar 

  27. Park, E. J., et al. (2013). Induction of HO-1 through p38 MAPK/Nrf2 signaling pathway by ethanol extract of Inula helenium L. reduces inflammation in LPS-activated RAW 264.7 cells and CLP-induced septic mice. Food and Chemical Toxicology, 55, 386–395. doi:10.1016/j.fct.2012.12.027.

    Article  CAS  Google Scholar 

  28. Saha, R. N., Jana, M., & Pahan, K. (2007). MAPK p38 regulates transcriptional activity of NF-κB in primary human astrocytes via acetylation of p65. The Journal of Immunology, 179, 7101–7109. doi:10.4049/jimmunol.179.10.7101.

    Article  CAS  Google Scholar 

  29. Patel, D. N., et al. (2007). Interleukin-17 Stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-κB and C/EBPβ activation. Journal of Biological Chemistry, 282, 27229–27238. doi:10.1074/jbc.M703250200.

    Article  CAS  Google Scholar 

  30. Bowie, A., & O’Neill, L. A. J. (2000). Oxidative stress and nuclear factor-κB activation: a reassessment of the evidence in the light of recent discoveries. Biochemical Pharmacology, 59, 13–23. doi:10.1016/S0006-2952(99)00296-8.

    Article  CAS  Google Scholar 

  31. Schmidt, K. N., Amstad, P., Cerutti, P., & Baeuerle, P. A. (1995). The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-κB. Chemistry & Biology, 2, 13–22. doi:10.1016/1074-5521(95)90076-4.

    Article  CAS  Google Scholar 

  32. Chen, D.-J., Xu, Y.-M., Du, J.-Y., Huang, D.-Y., & Lau, A. T. Y. (2014). Cadmium induces cytotoxicity in human bronchial epithelial cells through upregulation of eIF5A1 and NF-kappaB. Biochemical and Biophysical Research Communications, 445, 95–99. doi:10.1016/j.bbrc.2014.01.146.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology (NRF-2013R1A1A1058835), (NRF-2013M3A9B4076485), (NRF-2013M3A9B4044387), and the Next-Generation BioGreen 21 Program, Rural Development Administration (Project Name: Development of animal models for human neurological and immune disorders).

Conflict of Interest

There is no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongpil Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, S., Hur, J. & Kim, J. DHEA Alleviates Oxidative Stress of Muscle Cells via Activation of Nrf2 Pathway. Appl Biochem Biotechnol 176, 22–32 (2015). https://doi.org/10.1007/s12010-015-1500-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1500-y

Keywords

Navigation