Skip to main content
Log in

Decreased Cellulase and Xylanase Production in the Fungus Talaromyces cellulolyticus by Disruption of tacA and tctA Genes, Encoding Putative Zinc Finger Transcriptional Factors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) is one of the important strains for industrial cellulase production. An understanding of the control of cellulase gene expression in T. cellulolyticus is insufficient because only a few transcriptional factors related to cellulase gene expression have been identified. In the present study, we disrupted seven putative transcription regulator genes that showed similarity with cellulase or hemicellulase regulator genes in other filamentous fungi and investigated whether these genes are related to cellulase and xylanase production. Among the seven genes, five (tclA, tbgA, tlaA, tmcA, tclB2) had a smaller effect on cellulase and xylanase activities when culturing with cellulose. On the other hand, disruption of tacA and tctA, which are respectively homologues of ace1 (repressor of cellulase) and ctf1 (inducer of cutinase), led to a decrease in cellulase and hemicellulase production due to effects at both the enzymatic and transcriptional levels, indicating that tacA and tctA have positive roles in cellulase and xylanase production in T. cellulolyticus. These results suggest that cellulase and xylanase gene regulation in T. cellulolyticus differs from that in other filamentous fungi and imply that unknown transcriptional mechanisms function in T. cellulolyticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yamanobe, T., Mitsuishi, Y., & Takasaki, Y. (1987). Agricultural and Biological Chemistry, 51, 65–74.

    Article  CAS  Google Scholar 

  2. Gusakov, A. V. (2011). Trends in Biotechnology, 29, 419–425.

    Article  CAS  Google Scholar 

  3. Fujii, T., Hoshino, T., Inoue, H., & Yano, S. (2014). FEMS Microbiology Letters, 351, 32–41.

    Article  CAS  Google Scholar 

  4. Fujii, T., Fang, X., Inoue, H., Murakami, K., & Sawayama, S. (2009). Biotechnology for Biofuels, 2, 24.

    Article  Google Scholar 

  5. Fujii, T., Iwata, K., Murakami, K., Yano, S., & Sawayama, S. (2012). Bioscience, Biotechnology, and Biochemistry, 76, 245–249.

    Article  CAS  Google Scholar 

  6. Inoue, H., Fujii, T., Yoshimi, M., Taylor, L. E., 2nd, Decker, S. R., Kishishita, S., Nakabayashi, M., & Ishikawa, K. (2013). Journal of Industrial Microbiology and Biotechnology, 40, 823–830.

    Article  CAS  Google Scholar 

  7. Kanna, M., Yano, S., Inoue, H., Fujii, T., & Sawayama, S. (2011). AMB Express, 1, 15.

    Article  Google Scholar 

  8. Stricker, A., Grosstessner-Hain, K., Würleitner, E., & Mach, R. (2006). Eukaryotic Cell, 5, 2128–2137.

    Article  CAS  Google Scholar 

  9. van Peij, N., Gielkens, M., de Vries, R., Visser, J., & de Graaff, L. (1998). Applied and Environmental Microbiology, 64, 3615–3619.

    Google Scholar 

  10. Aro, N., Ilmen, M., Saloheimo, A., & Penttilä, M. (2003). Applied and Environmental Microbiology, 69, 56–65.

    Article  CAS  Google Scholar 

  11. Aro, N., Saloheimo, A., Ilmen, M., & Penttilä, M. (2001). Journal of Biological Chemistry, 276, 24309–24314.

    Article  CAS  Google Scholar 

  12. Nitta, M., Furukawa, T., Shida, Y., Mori, K., Kuhara, S., Morikawa, Y., & Ogasawara, W. (2012). Fungal Genetics and Biology, 49, 388–397.

    Article  CAS  Google Scholar 

  13. Dowzer, C., & Kelly, J. (1989). Current Genetics, 15, 457–459.

    Article  CAS  Google Scholar 

  14. Ilmen, M., Onnela, M. L., Klemsdal, S., Keranen, S., & Penttilä, M. (1996). Molecular and General Genetics, 253, 303–314.

    CAS  Google Scholar 

  15. Wen, Z., Liao, W., & Chen, S. (2005). Process Biochemistry, 40, 3087–3094.

    Article  CAS  Google Scholar 

  16. Seiboth, B., Karimi, R. A., Phatale, P. A., Linke, R., Hartl, L., Sauer, D. G., Smith, K. M., Baker, S. E., Freitag, M., & Kubicek, C. P. (2012). Molecular Microbiology, 84, 1150–1164.

    Article  CAS  Google Scholar 

  17. Yamakawa, Y., Endo, Y., Li, N., Yoshizawa, M., Aoyama, M., Watanabe, A., Kanamaru, K., Kato, M., & Kobayashi, T. (2013). Biochemical and Biophysical Research Communications, 431, 777–782.

    Article  CAS  Google Scholar 

  18. Kunitake, E., Tani, S., Sumitani, J., & Kawaguchi, T. (2012). Applied Microbiology and Biotechnology, 97, 2017–2028.

    Article  Google Scholar 

  19. Li, D., Sirakova, T., Rogers, L., Ettinger, W. F., & Kolattukudy, P. E. (2002). Journal of Biological Chemistry, 277, 7905–7912.

    Article  CAS  Google Scholar 

  20. Coradetti, S. T., Craig, J. P., Xiong, Y., Shock, T., Tian, C., & Glass, N. L. (2012). Proceedings of the National Academy of Sciences of the United States of America, 109, 7397–7402.

    Article  CAS  Google Scholar 

  21. Fujii, T., Inoue, H., & Ishikawa, K. (2013). AMB Express, 3, 73.

    Article  Google Scholar 

  22. Fujii, T., Inoue, H., & Ishikawa, K. (2014). Bioscience, Biotechnology, and Biochemistry, 78, 1564–1567.

    Article  CAS  Google Scholar 

  23. Fujii, T., Murakami, K., & Sawayama, S. (2010). Bioscience, Biotechnology, and Biochemistry, 74, 419–422.

    Article  CAS  Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  25. Fang, X., Yano, S., Inoue, H., & Sawayama, S. (2009). Journal of Bioscience and Bioengineering, 106, 115–120.

    Article  Google Scholar 

  26. Cochet, N., Tyagi, R. D., Ghose, T. K., & Lebeault, J. M. (1984). Biotechnology Letters, 6, 155–160.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tamotsu Hoshino, Dr. Ken-ichi Nakayama, and Dr. Masahiro Watanabe of AIST for helpful discussions. This study was supported by MEXT/JSPS KAKENHI Grant Number 26850058, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Fujii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, T., Inoue, H. & Ishikawa, K. Decreased Cellulase and Xylanase Production in the Fungus Talaromyces cellulolyticus by Disruption of tacA and tctA Genes, Encoding Putative Zinc Finger Transcriptional Factors. Appl Biochem Biotechnol 175, 3218–3229 (2015). https://doi.org/10.1007/s12010-015-1497-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1497-2

Keywords

Navigation