Skip to main content
Log in

Extracellular Overexpression of Chitosanase from Bacillus sp. TS in Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The chitosanase gene from a Bacillus sp. strain isolated from soil in East China was cloned and expressed in Escherichia coli. The gene had 1224 nucleotides and encoded a mature protein of 407 amino acid residues. The optimum pH and temperature of the purified recombinant chitosanase were 5.0 and 60 °C, respectively, and the enzyme was stable below 40 °C. The K m, V max, and specific activity of the enzyme were 1.19 mg mL–1, 674.71 μmol min–1 at 50 °C, and 555.3 U mg–1, respectively. Mn2+ was an activator of the recombinant chitosanase, while Co2+ was an inhibitor. Hg2+ and Cu2+ inhibited the enzyme at 1 mM. The highest level of enzyme activity (186 U mL–1) was achieved in culture medium using high cell-density cultivation in a 7-L fermenter. The main products of chitosan hydrolyzed by recombinant chitosanase were (GlcN)3–6. The chitosanases was successfully secreted to the culture media through the widely used SecB-dependent type II pathway in E. coli. The high yield of the extracellular overexpression, relevant thermostability, and effective hydrolysis of commercial grade chitosan showed that this recombinant enzyme had a great potential for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xia, W. S., Liu, P., Zhang, J. L., & Chen, J. (2011). Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloide, 25, 170–179.

    Article  CAS  Google Scholar 

  2. Chang, W. T., Chen, Y. C., & Jao, C. L. (2007). Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresource Technology, 98, 1224–1230.

    Article  CAS  Google Scholar 

  3. Kobayashi, M., Watanabe, T., Suzuki, S., & Suzuki, M. (1990). Effect of N-acetylchitohexaose against Candida albicans infection of tumor-bearing mice. Microbiology and Immunology, 34, 413–426.

    Article  CAS  Google Scholar 

  4. Dutta, J., Tripathi, S., & Dutta, P. K. (2012). Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: A systematic study needs for food applications. Food Science and Technology International, 18, 3–34.

    Article  CAS  Google Scholar 

  5. Lee, B. C., Kim, M. S., Choi, S. H., Kim, K. Y., & Kim, T. S. (2009). In vitro and in vivo antimicrobial activity of water-soluble chitosan oligosaccharides against Vibrio vulnificus. International Journal of Molecular Medicine, 24, 327–333.

    CAS  Google Scholar 

  6. Tokoro, A., Kobayashi, M., Tatewaki, N., Suzuki, K., Okawa, Y., Mikami, T., Suzuki, S., & Suzuki, M. (1989). Protective effect of N-acetyl chitohexaose on Listeria monocytogenes infection in mice. Microbiology and Immunology, 33, 357–367.

    Article  CAS  Google Scholar 

  7. Suzuki, K., Mikami, T., Okawa, Y., Tokoro, A., Suzuki, S., & Suzuki, M. (1986). Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydrate Research, 151, 403–408.

    Article  CAS  Google Scholar 

  8. Tokoro, A., Suzuki, K., Matsumoto, T., Mikami, T., Suzuki, S., & Suzuki, M. (1988). Chemotactic response of human neutrophils to N-acetyl chitohexaose in vitro. Microbiology and Immunology, 32, 387–395.

    Article  CAS  Google Scholar 

  9. Suzuki, K., Tokoro, A., Okawa, Y., Suzuki, S., & Suzuki, M. (1985). Enhancing effects of N-acetyl-chito-oligosaccharides on the active oxygen-generating and microbicidal activities of peritoneal exudate cells in mice. Chemical and Pharmaceutical Bulletin (Tokyo), 33, 886–888.

    Article  CAS  Google Scholar 

  10. Hadwiger, L. A., & Beckman, J. M. (1980). Chitosan as a component of Pea–Fusarium solani interactions. Plant Physiology, 66, 205–211.

    Article  CAS  Google Scholar 

  11. Hadwiger, L. A., Beckman, J. M., & Adams, M. J. (1981). Localization of fungal components in the Pea-Fusarium interaction detected immunochemically with anti-chitosan and anti-fungal cell wall Antisera. Plant Physiology, 67, 170–175.

    Article  CAS  Google Scholar 

  12. Kendra, D. F., Christian, D., & Hadwiger, L. A. (1989). Chitosan oligomers from Fusarium-solani pea interactions, chitinase beta-glucanase digestion of sporelings and from fungal wall chitin actively inhibit fungal growth and enhance disease resistance. Physiological and Molecular Plant Pathology, 35, 215–230.

    Article  CAS  Google Scholar 

  13. Bae, M. J., Shin, H. S., Kim, E. K., Kim, J., & Shon, D. H. (2013). Oral administration of chitin and chitosan prevents peanut-induced anaphylaxis in a murine food allergy model. International Journal of Biological Macromolecules, 61, 164–168.

    Article  CAS  Google Scholar 

  14. Estevinho, B. M., Rocha, F. A., Santos, L. M., & Alves, M. A. (2013). Using water-soluble chitosan for flavour microencapsulation in food industry. Journal of Microencapsulation, 30, 571–579.

    Article  CAS  Google Scholar 

  15. Giner, M. J., Vegara, S., Funes, L., Marti, N., Saura, D., Micol, V., & Valero, M. (2012). Antimicrobial activity of food-compatible plant extracts and chitosan against naturally occurring micro-organisms in tomato juice. Journal of the Science of Food and Agriculture, 92, 1917–1923.

    Article  CAS  Google Scholar 

  16. Jung, W. J., & Park, R. D. (2014). Bioproduction of chitooligosaccharides: Present and perspectives. Marine Drugs, 12, 5328–5356.

    Article  CAS  Google Scholar 

  17. Kim, P. I., Kang, T. H., Chung, K. J., Kim, I. S., & Chung, K. C. (2004). Purification of a constitutive chitosanase produced by Bacillus sp. MET 1299 with cloning and expression of the gene. FEMS Microbiology Letters, 240, 31–39.

    Article  CAS  Google Scholar 

  18. Su, C., Wang, D., Yao, L., & Yu, Z. (2006). Purification, characterization, and gene cloning of a chitosanase from Bacillus species strain s65. Journal of Agricultural and Food Chemistry, 54, 4208–4214.

    Article  CAS  Google Scholar 

  19. Fukamizo, T., Honda, Y., Goto, S., Boucher, I., & Brzezinski, R. (1995). Reaction mechanism of chitosanase from Streptomyces sp. N174. Biochemical Journal, 311(Pt 2), 377–383.

    CAS  Google Scholar 

  20. Osswald, W. F., Shapiro, J. P., Doostdar, H., McDonald, R. E., Niedz, R. P., Nairn, C. J., Hearn, C. J., & Mayer, R. T. (1994). Identification and characterization of acidic hydrolases with chitinase and chitosanase activities from sweet orange callus tissue. Plant and Cell Physiology, 35, 811–820.

    CAS  Google Scholar 

  21. Sun, L., Adams, B., Gurnon, J. R., Ye, Y., & Van Etten, J. L. (1999). Characterization of two chitinase genes and one chitosanase gene encoded by Chlorella virus PBCV-1. Virology, 263, 376–387.

    Article  CAS  Google Scholar 

  22. Thadathil, N., & Velappan, S. P. (2014). Recent developments in chitosanase research and its biotechnological applications: A review. Food Chemistry, 150, 392–399.

    Article  CAS  Google Scholar 

  23. Wang, J., Zhou, W., Yuan, H., & Wang, Y. (2008). Characterization of a novel fungal chitosanase Csn2 from Gongronella sp. JG. Carbohydrate Research, 343, 2583–2588.

    Article  CAS  Google Scholar 

  24. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  25. Li, J., Li, X. L., Guo, Z. M., Yu, L., Zou, L. J., & Liang, X. M. (2011). Click maltose as an alternative to reverse phase material for desalting glycopeptides. Analyst, 136, 4075–4082.

    Article  CAS  Google Scholar 

  26. Wang, H. L., Li, X. M., Ma, Y. H., & Song, J. N. (2014). Characterization and high-level expression of a metagenome-derived alkaline pectate lyase in recombinant Escherichia coli. Process Biochemistry, 49, 69–76.

    Article  CAS  Google Scholar 

  27. Zhang, X. Y., Dai, A. L., Zhang, X. K., Kuroiwa, K., Kodaira, R., Shimosaka, M., & Okazaki, M. (2000). Purification and characterization of chitosanase and Exo-beta-D-glucosaminidase from a Koji mold, Aspergillus oryzae IAM2660. Bioscience, Biotechnology, and Biochemistry, 64, 1896–1902.

    Article  CAS  Google Scholar 

  28. Zhou, W., Yuan, H., Wang, J., & Yao, J. (2008). Production, purification and characterization of chitosanase produced by Gongronella sp. JG. Letters in Applied Microbiology, 46, 49–54.

    CAS  Google Scholar 

  29. Kurakake, M., Yo-u, S., Nakagawa, K., Sugihara, M., & Komaki, T. (2000). Properties of chitosanase from Bacillus cereus S1. Current Microbiology, 40, 6–9.

    Article  CAS  Google Scholar 

  30. Lee, H. S., Jang, J. S., Choi, S. K., Lee, D. W., Kim, E. J., Jung, H. C., & Pan, J. G. (2007). Identification and expression of GH-8 family chitosanases from several Bacillus thuringiensis subspecies. FEMS Microbiology Letters, 277, 133–141.

    Article  CAS  Google Scholar 

  31. Alvarenga, E. S. d. (2011). Characterization and properties of chitosan. Biotechnology Of Biopolymers. doi:10.5772/17020.

  32. Choi, Y. J., Kim, E. J., Piao, Z., Yun, Y. C., & Shin, Y. C. (2004). Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Applied and Environmental Microbiology, 70, 4522–4531.

    Article  CAS  Google Scholar 

  33. Honda, Y., Fukamizo, T., Boucher, I., & Brzezinski, R. (1997). Substrate binding to the inactive mutants of Streptomyces sp. N174 chitosanase: indirect evaluation from the thermal unfolding experiments. FEBS Letters, 411, 346–350.

    Article  CAS  Google Scholar 

  34. Pechsrichuang, P., Yoohat, K., & Yamabhai, M. (2013). Production of recombinant Bacillus subtilis chitosanase, suitable for biosynthesis of chitosan-oligosaccharides. Bioresource Technology, 127, 407–414.

    Article  CAS  Google Scholar 

  35. Roy, S., Fortin, M., Gagnon, J., Ghinet, M. G., Lehoux, J. G., Dupuis, G., & Brzezinski, R. (2007). Quantitative fluorometric analysis of the protective effect of chitosan on thermal unfolding of catalytically active native and genetically-engineered chitosanases. Biochimica et Biophysica Acta, 1774, 975–984.

    Article  CAS  Google Scholar 

  36. Liu, G. L., Li, Y., Zhou, H. X., Chi, Z. M., & Madzak, C. (2012). Over-expression of a bacterial chitosanase gene in Yarrowia lipolytica and chitosan hydrolysis by the recombinant chitosanase. Journal of Molecular Catalysis B: Enzymatic, 83, 100–107.

    Article  CAS  Google Scholar 

  37. Omumasaba, C. A., Yoshida, N., Sekiguchi, Y., Kariya, K., & Ogawa, K. (2000). Purification and some properties of a novel chitosanase from Bacillus subtilis KH1. Journal of General and Applied Microbiology, 46, 19–27.

    Article  CAS  Google Scholar 

  38. Jeon, Y. J., Shahidi, F., & Kim, S. K. (2000). Preparation of chitin and chitosan oligomers amd their applications in physiological functional foods. Food Review International, 16, 159–176.

    Article  CAS  Google Scholar 

  39. Nishimura, K., Nishimura, S., Nishi, N., Saiki, I., Tokura, S., & Azuma, I. (1984). Immunological activity of chitin and its derivatives. Vaccine, 2, 93–99.

    Article  CAS  Google Scholar 

  40. Tokoro, A., Tatewaki, N., Suzuki, K., Mikami, T., Suzuki, S., & Suzuki, M. (1988). Growth-inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose against Meth-A solid tumor. Chemical and Pharmaceutical Bulletin (Tokyo), 36, 784–790.

    Article  CAS  Google Scholar 

  41. Liu, Y. L., Jiang, S., Ke, Z. M., Wu, H. S., Chi, C. W., & Guo, Z. Y. (2009). Recombinant expression of a chitosanase and its application in chitosan oligosaccharide production. Carbohydrate Research, 344, 815–819.

    Article  CAS  Google Scholar 

  42. Li, X., Wang, H., Zhou, C., Ma, Y., Li, J., & Song, J. (2014). Cloning, expression and characterization of a pectate lyase from Paenibacillus sp. 0602 in recombinant Escherichia coli. BMC Biotechnology, 14, 18.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by grants from the Hundred Talents Program of the Chinese Academy of Sciences (CAS), the National Natural Science Foundation of China (11250110508, 31350110507), the Knowledge Innovation Program of CAS (KSCX2-EW-G-8), and the Tianjin Municipal Science & Technology Commission (10ZCKFSY05600). JL is an Australian National Health and Medical Research Council (NHMRC) Senior Research Fellow. JS is an NHMRC Peter Doherty Fellow and recipient of the Hundred Talents Program of CAS. The authors also would like to thank the Technology Support Center of Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, for providing the instrument for MALDI-TOF and mass spectrometry (MS) analysis.

Competing Interests

The authors declare financial competing interests. The content of this manuscript was partially patented by Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (Application Number 201410230852.X).

Authors’ Contributions

ZZ carried out the cloning, the purification of chitosanase, the heterologous expression, and the biochemical characterization of protein as well as drafted the manuscript. SZ and SW contributed to the experiments of the hydrolysis of chitosan by chitosanase. LS, JL, YM, and JS revised the manuscript. JS supervised the study. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangning Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhao, S., Wang, S. et al. Extracellular Overexpression of Chitosanase from Bacillus sp. TS in Escherichia coli . Appl Biochem Biotechnol 175, 3271–3286 (2015). https://doi.org/10.1007/s12010-015-1494-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1494-5

Keywords

Navigation