Skip to main content
Log in

Metagenomic Analysis of the Sludge Microbial Community in a Lab-Scale Denitrifying Phosphorus Removal Reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. In the present study, the metagenome of denitrifying phosphorus removal sludge from a lab-scale anaerobic–anoxic SBR was generated by Illumina sequencing to study the microbial community. Compared with the aerobic phosphorus removal sludge, the denitrifying phosphorus removal sludge demonstrated quite similar microbial community profile and microbial diversity with sludge from Aalborg East EBPR WWTP. Proteobacteria was the most dominant phylum; within Proteobacteria, β-Proteobacteria was the most dominant class, followed by α-, γ-, δ-, and ε-Proteobacteria. The genes involved in phosphate metabolism and biofilm formation reflected the selective pressure of the phosphorus removal process. Moreover, ppk sequence from DPAO was outside the Accumulibacter clusters, which suggested different core phosphorus removal bacteria in denitrifying and aerobic phosphorus removal systems. In a summary, putative DPAO might be a novel genus that is closely related between Accumulibacter and Dechloromonas within Rhodocyclus. The microbial community and metabolic profiles achieved in this study will eventually help to improve the understanding of key microorganisms and the entire community in order to improve the phosphorus removal efficiency of EBPR processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Broughton, A., Pratt, S., & Shilton, A. (2008). Enhanced biological phosphorus removal for high-strength wastewater with a low rbCOD:P ratio. Bioresource Technology, 99, 1236–1241.

    Article  CAS  Google Scholar 

  2. Oehmen, A., Lemos, P. C., Carvalho, G., Yuan, Z. G., Keller, J., Blackall, L. L., & Reis, M. (2007). Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Research, 41, 2271–2300.

    Article  CAS  Google Scholar 

  3. Painting, S. J., Devlin, M. J., Malcolm, S. J., et al. (2007). Assessing the impact of nutrient enrichment in estuaries: susceptibility to eutrophication. Marine Pollution Bulletin, 55, 74–90.

    Article  CAS  Google Scholar 

  4. Seviour, R. J., Mino, T., & Onuki, M. (2003). The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiology Reviews, 27, 99–127.

    Article  CAS  Google Scholar 

  5. Ahn, J., Daidou, T., Tsuneda, S., & Hirata, A. (2002). Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay. Water Research, 36, 403–412.

    Article  CAS  Google Scholar 

  6. Vargas, M., Guisasola, A., Artigues, A., Casas, C., & Baeza, J. A. (2011). Comparison of a nitrite-based anaerobic–anoxic EBPR system with propionate or acetate as electron donors. Process Biochemistry, 46, 714–720.

    Article  CAS  Google Scholar 

  7. Zhou, S. Q., Zhang, X. J., & Feng, L. Y. (2010). Effect of different types of electron acceptors on the anoxic phosphorus uptake activity of denitrifying phosphorus removing bacteria. Bioresource Technology, 101, 1603–1610.

    Article  CAS  Google Scholar 

  8. Kapagiannidis, A. G., Zafiriadis, I., & Aivasidis, A. (2009). Comparison between UCT type and DPAO biomass phosphorus removal efficiency under aerobic and anoxic conditions. Water Science Technology, 60, 2695–2703.

    Article  CAS  Google Scholar 

  9. Kuba, T., Smolders, G., Van Loosdrecht, M., & Heijnen, J. J. (1993). Biological phosphorus removal from waste-water by anaerobic–anoxic sequencing batch reactor. Water Science Technology, 27, 241–252.

    CAS  Google Scholar 

  10. Guerrero, J., Taya, C., Guisasola, A., & Baeza, J. A. (2012). Understanding the detrimental effect of nitrate presence on EBPR systems: effect of the plant configuration. Journal of Chemical Technology and Biotechnology, 87, 1508–1511.

    Article  CAS  Google Scholar 

  11. Hongbo, L., Liping, S., & Siqing, X. (2008). An efficient DPB utilization process: the modified A(2)N process. Biochemical Engineering Journal, 38, 158–163.

    Article  Google Scholar 

  12. Ostgaard, K., Christensson, M., Lie, E., Jonsson, K., & Welander, T. (1997). Anoxic biological phosphorus removal in a full-scale UCT process. Water Research, 31, 2719–2726.

    Article  CAS  Google Scholar 

  13. Sunagawa, S., Mende, D. R., Zeller, G., et al. (2013). Metagenomic species profiling using universal phylogenetic marker genes. Nature Methods, 10, 1196–1199.

    Article  CAS  Google Scholar 

  14. Faust, K., & Raes, J. (2012). Microbial interactions: from networks to models. Nature Reviews Microbiology, 10, 538–550.

    Article  CAS  Google Scholar 

  15. Shendure, J., & Ji, H. L. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26, 1135–1145.

    Article  CAS  Google Scholar 

  16. Qin, J. J., Li, R. Q., Raes, J., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–70.

    Article  CAS  Google Scholar 

  17. Hess, M., Sczyrba, A., Egan, R., et al. (2011). Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science, 331, 463–467.

    Article  CAS  Google Scholar 

  18. Gilbert, J. A., Field, D., Huang, Y., Edwards, R., Li, W. Z., Gilna, P., & Joint, I. (2008). Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One, 3, e3042.

    Article  Google Scholar 

  19. Urich, T., Lanzen, A., Qi, J., Huson, D. H., Schleper, C., & Schuster, S. C. (2008). Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One, 3, e2527.

    Article  Google Scholar 

  20. Martin, H. G., Ivanova, N., Kunin, V., et al. (2006). Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nature Biotechnology, 24, 1263–1269.

    Article  CAS  Google Scholar 

  21. Albertsen, M., Hansen, L., Saunders, A. M., Nielsen, P. H., & Nielsen, K. L. (2012). A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME Journal, 6, 1094–1106.

    Article  CAS  Google Scholar 

  22. Patel, P. V., Gianoulis, T. A., Bjornson, R. D., Yip, K. Y., Engelman, D. M., & Gerstein, M. B. (2010). Analysis of membrane proteins in metagenomics: networks of correlated environmental features and protein families. Genome Research, 20, 960–971.

    Article  CAS  Google Scholar 

  23. Sanapareddy, N., Hamp, T. J., Gonzalez, L. C., Hilger, H. A., Fodor, A. A., & Clinton, S. M. (2009). Molecular diversity of a North Carolina wastewater treatment plant as revealed by pyrosequencing. Applied and Environmental Microbiology, 75, 1688–1696.

    Article  CAS  Google Scholar 

  24. Lv, X. M., Shao, M. F., Li, C. L., Li, J., Gao, X. L., & Sun, F. Y. (2014). A comparative study of bacterial community in denitrifying and traditional enhanced biological phosphorous removal processes. Microbes and Environments, 29, 261–268.

    Article  Google Scholar 

  25. Meyer, F., Paarmann, D., D'Souza, M., et al. (2008). The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 9, 386.

    Article  CAS  Google Scholar 

  26. Dinsdale, E. A., Edwards, R. A., Hall, D., et al. (2008). Functional metagenomic profiling of nine biomes. Nature, 455, 830.

    Article  CAS  Google Scholar 

  27. Xia, S. Q., Duan, L., Song, Y. H., et al. (2010). Bacterial community structure in geographically distributed biological wastewater treatment reactors. Environmental Science and Technology, 44, 7391–7396.

    Article  CAS  Google Scholar 

  28. Yu, K., & Zhang, T. (2012). Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One, 7, e38183.

    Article  CAS  Google Scholar 

  29. Pope, P. B., Totsika, M., de Carcer, D. A., Schembri, M. A., & Morrison, M. (2011). Muramidases found in the foregut microbiome of the Tammar wallaby can direct cell aggregation and biofilm formation. ISME Journal, 5, 341–350.

    Article  CAS  Google Scholar 

  30. Barr, J. J., Slater, F. R., Fukushima, T., & Bond, P. L. (2010). Evidence for bacteriophage activity causing community and performance changes in a phosphorus-removal activated sludge. FEMS Microbiology Ecology, 74, 631–642.

    Article  CAS  Google Scholar 

  31. Kunin, V., He, S., Warnecke, F., et al. (2008). A bacterial metapopulation adapts locally to phage predation despite global dispersal. Genome Research, 18, 293–297.

    Article  CAS  Google Scholar 

  32. McMahon, K. D., Dojka, M. A., Pace, N. R., Jenkins, D., & Keasling, J. D. (2002). Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal. Applied and Environmental Microbiology, 68, 4971–4978.

    Article  CAS  Google Scholar 

  33. He, S., Gall, D. L., & McMahon, K. D. (2007). “Candidatus Accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes. Applied and Environmental Microbiology, 73, 5865–5874.

    Article  CAS  Google Scholar 

  34. McMahon, K. D., Yilmaz, S., He, S. M., Gall, D. L., Jenkins, D., & Keasling, J. D. (2007). Polyphosphate kinase genes from full-scale activated sludge plants. Applied Microbiology and Biotechnology, 77, 167–173.

    Article  CAS  Google Scholar 

  35. Peterson, S. B., Warnecke, F., Madejska, J., McMahon, K. D., & Hugenholtz, P. (2008). Environmental distribution and population biology of Candidatus Accumulibacter., a primary agent of biological phosphorus removal. Environmental Microbiology, 10, 2692–2703.

    Article  CAS  Google Scholar 

  36. Kim, J. M., Lee, H. J., Lee, D. S., & Jeon, C. O. (2013). Characterization of the denitrification-associated phosphorus uptake properties of “Candidatus Accumulibacter phosphatis” clades in sludge subjected to enhanced biological phosphorus removal. Applied and Environmental Microbiology, 79, 969–1979.

    Google Scholar 

  37. Kong, Y. H., Xia, Y., Nielsen, J. L., & Nielsen, P. H. (2007). Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology-SGM, 153, 4061–4073.

    Article  CAS  Google Scholar 

  38. Zilles, J. L., Peccia, J., Kim, M. W., Hung, C. H., & Noguera, D. R. (2002). Involvement of Rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants. Applied and Environmental Microbiology, 68, 2763–2769.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the financial support of the China Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07313001), Shenzhen Basic Research Project (JC201105160582A) and Natural Science Foundation of China (31200104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Metagenomes of wastewater treatment unrelated sludge samples (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, XM., Shao, MF., Li, J. et al. Metagenomic Analysis of the Sludge Microbial Community in a Lab-Scale Denitrifying Phosphorus Removal Reactor. Appl Biochem Biotechnol 175, 3258–3270 (2015). https://doi.org/10.1007/s12010-015-1491-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1491-8

Keywords

Navigation