Skip to main content
Log in

High Levan Production by Bacillus licheniformis NS032 Using Ammonium Chloride as the Sole Nitrogen Source

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, levan production by Bacillus licheniformis NS032 isolated from a petroleum sludge sample was investigated. High levan yield was obtained in a wide range of sucrose concentrations (up to 400 g/L) and, contrary to most levan-producing strains, using ammonium chloride as the sole N source. Interaction between sucrose, ammonium chloride, and initial pH of the medium in a low sucrose (60–200 g/L) and a high sucrose (300–400 g/L) system was analyzed by response surface methodology. According to the calculated model in the low sucrose system, maximum predicted levan yield was 47.8 g/L (sucrose 196.8 g/L, ammonium chloride 2.4 g/L, pH 7.0), while in the high sucrose system, levan yield was 99.2 g/L (sucrose 397.6 g/L, ammonium chloride 4.6 g/L, pH 7.4). In addition, protective effect of microbial levan against copper toxicity to Daphnia magna is observed for the first time. The acute toxicity (48 h EC50) of copper decreased from 0.14 to 0.44 mg/L by levan in concentration of 50 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kang, S.A., Jang, K.H., Seo, J.W., Kim, K.H., Kim, Y.H., Rairakhwada, D., Seo, M.Y., Lee, J.O., Ha, S.D., Kim, C.H., & Rhee, S.K. (2009) In Microbial Production of Biopolymers and Polymer Precursors: Applications and Perspectives, (Rehm, B.H.A., ed), Caister Academic Press, Norfolk, UK, pp. 145-161. 

  2. Combie, J., Steel, A., & Sweitzer, R. (2004). Clean Technologies and Environmental Policy, 6, 258–262.

    Article  CAS  Google Scholar 

  3. Costa, R. R., Neto, A. I., Calgeris, I., Correia, C., Pinho, A. C. M., Fonseca, J., Onerc, E. T., & Mano, E. T. (2013). Journal of Materials Chemistry B, 1, 2367–2374.

    Article  CAS  Google Scholar 

  4. Ghaly, A. E., Arab, F., Mahmoud, N. S., & Higgins, J. (2007). American Journal of Biotechnology and Biochemistry, 3, 47–54.

    Article  CAS  Google Scholar 

  5. Nakapong, S., Pichyangkura, R., Ito, K., Iizuka, M., & Pongsawasdi, P. (2013). International Journal of Biological Macromolecules, 54, 30–36.

    Article  CAS  Google Scholar 

  6. de Oliveira, M. R., da Silva, R. S. S. F., Buzato, J. B., & Celligoi, M. A. P. C. (2007). Biochemical Engineering Journal, 37, 177–183.

    Article  CAS  Google Scholar 

  7. Silbir, S., Dagbagli, S., Yegin, S., Baysal, T., & Goksungur, Y. (2014). Carbohydrate Polymers, 99, 454–461.

    Article  CAS  Google Scholar 

  8. Han, Y. W., & Clarke, M. A. (1990). Journal of Agricultural and Food Chemistry, 38, 393–396.

    Article  CAS  Google Scholar 

  9. Liu, C., Lu, J., Lu, L., Liu, Y., Wang, F., & Xiao, M. (2010). Bioresource Technology, 101, 5528–5533.

    Article  CAS  Google Scholar 

  10. Shih, I. L., Yu, Y. T., Shieh, C. J., & Hsieh, C. Y. (2005). Journal of Agricultural and Food Chemistry, 53, 8211–8215.

    Article  CAS  Google Scholar 

  11. Liu, J., Luo, J., Ye, H., Sun, Y., Lu, Z., & Zeng, X. (2009). Carbohydrate Polymers, 78, 275–281.

    Article  CAS  Google Scholar 

  12. Keith, J., Wiley, B., Ball, D., Arcidiacono, S., Zorfass, D., Mayer, J., & Kaplan, D. (1991). Biotechnology and Bioengineering, 38, 557–560.

    Article  CAS  Google Scholar 

  13. Jathore, N. R., Bule, M. V., Tilay, A. V., & Annapure, U. S. (2012). Food Science and Biotechnology, 21, 1045–1053.

    Article  CAS  Google Scholar 

  14. Corrigan, A. J., & Robyt, J. F. (1979). Infection and Immunity, 26, 387–389.

    CAS  Google Scholar 

  15. Velázquez-Hernández, M. L., Baizabal-Aguirre, V. M., Bravo-Patiño, A., Cajero-Juárez, M., Chávez-Moctezuma, M. P., & Valdez-Alarcón, J. J. (2009). Journal of Applied Microbiology, 106, 1763–1778.

    Article  Google Scholar 

  16. Poli, A., Kazak, H., Gürleyendag, B., Tommonaro, G., Pieretti, G., Öner, E. T., & Nicolaus, B. (2009). Carbohydrate Polymers, 78, 651–657.

    Article  CAS  Google Scholar 

  17. Spanò, A., Gugliandolo, C., Lentini, V., Maugeri, T. L., Anzelmo, G., Poli, A., & Nicolaus, B. (2013). Current Microbiology, 67, 21–29.

    Article  Google Scholar 

  18. Kumar, A. S., Mody, K., & Jha, B. (2007). Journal of Basic Microbiology, 47, 103–117.

    Article  CAS  Google Scholar 

  19. Bas, D., & Boyacı, I. H. (2007). Journal of Food Engineering, 78, 836–845.

    Article  CAS  Google Scholar 

  20. Montgomery, D. S. (2001). Design and analysis of experiments (5th ed., pp. 427–510). NewYork: John Willey & Sons, Inc.

    Google Scholar 

  21. Yoon, S., Hong, E., Kim, S., Lee, P., Kim, M., Yang, H., & Ryu, Y. (2012). Bioprocess and Biosystems Engineering, 35, 167–172.

    Article  CAS  Google Scholar 

  22. Majumder, A., Singh, A., & Goyal, A. (2009). Carbohydrate Polymers, 75, 150–156.

    Article  CAS  Google Scholar 

  23. Cui, J.-D., & Zhang, Y.-N. (2012). Applied Biochemistry and Biotechnology, 168, 1394–1404.

    Article  CAS  Google Scholar 

  24. Melo, I. R., Pimentel, M. F., Lopes, C. E., & Calazans, G. M. T. (2007). Brazilian Journal of Microbiology, 38, 45–51.

    Article  Google Scholar 

  25. Gojgic-Cvijovic, G. D., Milic, J. S., Solevic, T. M., Beskoski, V. P., Ilic, M. V., Djokic, L. S., Narancic, T. M., & Vrvic, M. M. (2012). Biodegradation, 23, 1–14.

    Article  CAS  Google Scholar 

  26. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  27. OECD Guideline for testing of chemicals. (2004). Daphnia sp. Acute Immobilisation Test. OECD Guideline 202.

  28. Janssen, C. R., & Persoone, G. (1993). Environmental Toxicology and Chemistry, 12, 711–717.

    CAS  Google Scholar 

  29. Teodorovic, I., & Mauric, N. (2003). TesTox version 1.0.

  30. Abdel-Fattah, A. M., Gamal-Eldeen, A. M., Helmy, W. A., & Esawy, M. A. (2012). Carbohydrate Polymers, 89, 314–322.

    Article  CAS  Google Scholar 

  31. Belghith, K. S., Dahech, I., Belghith, H., & Mejdoub, H. (2012). International Journal of Biological Macromolecules, 50, 451–458.

    Article  CAS  Google Scholar 

  32. Liu, J., Luo, J., Ye, H., Sun, Y., Lu, Z., & Zeng, X. (2010). Carbohydrate Polymers, 79, 206–213.

    Article  CAS  Google Scholar 

  33. Abdel-Fattah, A. F., Mahmoud, D. A. R., & Esawy, M. A. T. (2005). Current Microbiology, 51, 402–407.

    Article  CAS  Google Scholar 

  34. Wu, F.-C., Chou, S.-Z., & Shih, I.-L. (2013). J Taiwan Inst Chem Eng, 44, 846–853.

    Article  CAS  Google Scholar 

  35. Shih, I. L., Chen, L.-D., & Wu, J.-Y. (2010). Carbohydrate Polymers, 82, 111–117.

    Article  CAS  Google Scholar 

  36. Donot, F., Fontana, A., Baccou, J. C., & Schorr-Galindo, S. (2012). Carbohydrate Polymers, 87, 951–962.

    Article  CAS  Google Scholar 

  37. Gupta, S. K., Pal, A. K., Sahu, N. P., Saharan, N., Mandal, S. C., Prakash, C., Akhtar, M. S., & Prusty, A. K. (2014). Aquaculture Research, 45, 893–906.

    Article  CAS  Google Scholar 

  38. Ringo, E., Olsen, R. E., Gifstad, T. Ø., Dalmo, R. A., Amlund, H., Hemre, G.-I., & Bakke, A. M. (2010). Aquaculture Nutrition, 16, 117–136.

    Article  Google Scholar 

  39. Xie, F., Koziar, S. A., Lampi, M. A., Dixon, D. G., Norwood, W. P., Borgmann, U., Huang, X.-D., & Greenberg, B. M. (2006). Environmental Toxicology and Chemistry, 25, 613–622.

    Article  CAS  Google Scholar 

  40. French, A. D. (1988). Carbohydrate Research, 176, 17–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Education and Science of the Republic of Serbia (III 43004). We are grateful to Dr. Zorka Dulic from Faculty of Agriculture, University of Belgrade for the generous gift of D. magna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Gojgic-Cvijovic.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kekez, B.D., Gojgic-Cvijovic, G.D., Jakovljevic, D.M. et al. High Levan Production by Bacillus licheniformis NS032 Using Ammonium Chloride as the Sole Nitrogen Source. Appl Biochem Biotechnol 175, 3068–3083 (2015). https://doi.org/10.1007/s12010-015-1475-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1475-8

Keywords

Navigation