Skip to main content
Log in

A Rapid and Stable Agrobacterium-Mediated Transformation Method of a Medicinal Plant Chelone glabra L.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Transformation approach is a useful tool for the study of gene function, the mechanism of molecular regulation, and increase usefulness of components by reverse genetic approach in plants. In this study, we developed a stable and rapid method for Agrobacterium-mediated transformation of a medicinal plant Chelone glabra L. using leaf explants. Stable transformants were obtained using Agrobacterium tumefaciens strains GV2260 and GV3101 that harbored the binary vector pBI121 and contained the neomycin phosphotransferase gene (NPT II) as a selectable marker and a reporter gene β-glucuronidase (GUS). Putative transformants were identified by kanamycin selection and a histochemical assay. PCR and Southern blot analysis confirmed the integration of the GUS gene into transformed genomes as well as detected stable expression of the β-glucuronidase gene (GUS) by RT-PCR. Resulting transformed plants had morphologically normal phenotypes. This method requires two changes of medium and few leaf explants as well as the transformation efficiency of 2–8 % after 2–3 months of inoculation. This method can provide a quick and economical transformation method for reverse genetic approach to change the secondary metabolic pathway to increase useful components in C. glabra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Albach, D. C., Meudt, H. M., & Oxelman, B. (2005). American Journal Botany, 92, 297–315.

    Article  CAS  Google Scholar 

  2. Nelson, A. D., & Elisens, W. J. (1999). American Journal Botany, 86, 1487–1501.

    Article  CAS  Google Scholar 

  3. Cooperrider, T. S., & McCready, G. A. (1970). Brittonia, 22, 175–183.

    Article  Google Scholar 

  4. Bergeron, C., Marston, A., Gauthier, R., & Hostettmann, K. (1996). Pharmaceutical Biology, 34, 233–242.

    Article  Google Scholar 

  5. Konoshima, T., Takasaki, M., Tokuda, H., & Nishino, H. (2000). Cancer Letters, 157, 87–92.

    Article  CAS  Google Scholar 

  6. Park, K. S., & Chang, I. M. (2004). Planta Medica, 70, 778–779.

    Article  CAS  Google Scholar 

  7. Franzyk, H., Olsen, C. E., & Jensen, S. R. (2004). Journal of Natural Products, 67, 1052–1054.

    Article  CAS  Google Scholar 

  8. Menger, L., Vacchelli, E., Kepp, O., Eggermont, A., Tartour, E., Zitvogel, L., Kroemer, G., & Galluzzi, L. (2013). Oncoimmunology, 2, e23082.

    Article  Google Scholar 

  9. Vanisree, M., & Tsay, H. S. (2004). International Journal of Applied Science and Engineering, 2, 29–48.

    Google Scholar 

  10. Verpoorte, A., & Memelink, J. (2002). Phytochemistry Reviews, 1, 13–25.

    Article  CAS  Google Scholar 

  11. Sparks, C. A., & Jones, H. D. (2014). Methods in Molecular Biology, 1099, 201–218.

    Article  Google Scholar 

  12. Brew-Appiah, R. A., Ankrah, N., Liu, W., Konzak, C. F., von Wettstein, D., & Rustgi, S. (2013). PloS One, 18, e80155.

    Article  Google Scholar 

  13. Mano, H., Fujii, T., Sumikawa, N., Hiwatashi, Y., & Hasebe, M. (2014). PloS One, 9, e97211.

    Article  Google Scholar 

  14. Zambryski, P., Joos, H., Genetell, C., Leemans, J., Van Montagu, M., & Schell, J. (1983). EMBO Journal, 2, 2143–2150.

    CAS  Google Scholar 

  15. Frame, B. R., Shou, H., Chikwamba, R. K., Zhang, Z., Xiang, C., Fonger, T. M., Pegg, S. E., Li, B., Nettleton, D. S., Pei, D., & Wang, K. (2002). Plant Physiology, 129, 13–22.

    Article  CAS  Google Scholar 

  16. Wang, G., & Xu, Y. (2008). Plant Cell Reports, 27, 1177–1184.

    Article  Google Scholar 

  17. Leelavashi, S., Sunnichan, V. G., Kumria, R., Vijaykanth, G. P., & Bhathagar, R. K. (2004). Plant Cell Reports, 22, 465–470.

    Article  Google Scholar 

  18. Ozawa, K. (2009). Plant Science, 176, 522–527.

    Article  CAS  Google Scholar 

  19. Tsuda, K., Qi, Y., Nguyenle, V., Bethke, G., Tsuda, Y., Glazebrook, J., & Katagiri, F. (2012). Plant Journal, 69, 713–719.

    Article  CAS  Google Scholar 

  20. Li, Y., Gao, Z., Piao, C., Lu, K., Wang, Z., & Cui, M. L. (2014). Applied Biochemistry and Biotechnology, 172, 1807–1817.

    Article  CAS  Google Scholar 

  21. Cui, M., Ezura, H., Nishimura, S., Kamada, H., & Handa, T. (2004). Plant Science, 166, 873–879.

    Article  CAS  Google Scholar 

  22. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 81–84.

    Article  Google Scholar 

  23. Koncz, C., & Shell, J. (1986). Molecular Genetics and Genomics, 204, 383–396.

    Article  CAS  Google Scholar 

  24. Deblaere, R., Bytebier, B., De Greve, H., Deboeck, F., Schell, J., Van Montagu, M., & Leemans, J. (1985). Nucleic Acids Research, 13, 4777–4785.

    Article  CAS  Google Scholar 

  25. Shen, W. J., & Forde, B. G. (1989). Nucleic Acids Research, 17, 8385.

    Article  CAS  Google Scholar 

  26. Jefferson, R. A., Kavanaghm, T. A., & Bevan, M. W. (1987). EMBO Journal, 6, 3901–3907.

    CAS  Google Scholar 

  27. Rogers, S. O., & Bendich, A. J. (1985). Plant Molecular Biology, 5, 69–76.

    Article  CAS  Google Scholar 

  28. Bevan, M. W., Flavell, R. B., & Chilton, M. D. (1983). Naturem, 304, 184–187.

    Article  CAS  Google Scholar 

  29. Waldronm, A., Murphy, E. B., Roberts, J. L., Gustafson, G. D., Armour, S. L., & Malcolm, S. K. (1985). Plant Molecular Biology, 5, 103–108.

    Article  Google Scholar 

  30. Akama, K., Puchta, H., & Hohn, B. (1995). Plant Cell Reports, 14, 450–454.

    Article  CAS  Google Scholar 

  31. Shirgukar, M. V., Naik, V. B., Von-Arnold, S., Nadgauda, R. S., & Clapham, D. (2006). Plant Cell Reports, 25, 112–116.

    Article  Google Scholar 

  32. Gao, C., Liu, J., & Nielsen, K. K. (2009). Plant Cell Repirts, 28, 1431–1437.

    Article  CAS  Google Scholar 

  33. Catlin, D. W. (1990). Plant Cell Repots, 9, 285–288.

    CAS  Google Scholar 

  34. Mathias, R. J., & Mukasa, C. (1987). Plant Cell Reports, 6, 454–457.

    CAS  Google Scholar 

  35. Diemer, F., Jullien, F., Faure, O., Moja, S., Colson, M., Matthys-Rochon, E., & Caissard, J. C. (1998). Plant Science, 136, 101–108.

    Article  CAS  Google Scholar 

  36. Ye, G. N., Stone, D., Pang, S. Z., Creely, W., Gonzalez, K., & Hinchee, M. (1999). Plant Journal, 19, 249–257.

    Article  Google Scholar 

  37. Cui, M., Handa, T., & Ezura, H. (2003). Molecular Genetics and Genomics, 270, 296–302.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Karen Lee in John Innes Centre (UK) for critical comments on the manuscript. This work was supported by a grant from Yunnan provincial Science and Technology Department (no. 2012IB011) to MLC and ZXC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Long Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Li, Y., Chen, J. et al. A Rapid and Stable Agrobacterium-Mediated Transformation Method of a Medicinal Plant Chelone glabra L.. Appl Biochem Biotechnol 175, 2390–2398 (2015). https://doi.org/10.1007/s12010-014-1414-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1414-0

Keywords

Navigation