Skip to main content

Advertisement

Log in

Molecular Docking and Inhibition Kinetics of α-glucosidase Activity by Labdane Diterpenes Isolated from Tora Seeds (Alpinia nigra B.L. Burtt.)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Current approach against type 2 diabetes involves α-glucosidase inhibitors like acarbose associated with many side effects. Therefore, as an alternative to the existing drug, many natural products mainly from plant sources have been investigated which inhibit α-glucosidase. Here, we have selected medicinally important Alpinia nigra to explore its α-glucosidase inhibitory activity. Organic extracts of seeds and two purified natural diterpenes I: (E)-labda-8(17), 12-diene-15, 16-dial and II: (E)-8β, 17-epoxylabd-12-ene-15, 16-dial from A. nigra were investigated towards inhibition of α-glucosidase activity. Dose-dependant inhibition pattern were observed for seed extracts and both the compounds. Further, inhibition kinetics studies of the diterpenes indicated a non-competitive type of inhibition against α-glucosidase. Docking studies were carried out which revealed that both the diterpenes interacted within the active site of N-terminal and C-terminal domain of human maltase-glucoamylase enzyme, respectively. This is the first report of α-glucosidase inhibitory activity of these isolated diterpenes and their higher inhibitory potential than any terpenoids studied till date against α-glucosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. American Diabetes Association. (2005). Diabetes Care, 28, 37–42.

    Article  Google Scholar 

  2. Kim, Y. M., Wang, M. H., & Rhee, H. I. (2004). Carbohydrate Research, 339, 715–717.

    Article  CAS  Google Scholar 

  3. Bischcoff, H. (1994). European Journal of Clinical Investigation, 24, 3–10.

    Article  Google Scholar 

  4. Bhat, M., Zinjarde, S. S., Bhargava, S. Y., Kumar A. R., Joshi B. N. (2011) Evidence-based Complementary and Alternative Medicine, 810207.

  5. Modak, M., Dixit, P., Londhe, J., Ghaskadbi, S., Paul, A., & Devasagayam, T. (2007). Journal of Clinical Biochemistry and Nutrition, 40, 163–173.

    Article  Google Scholar 

  6. Asano, N. (2003). Glycobiology, 13, 93–104.

    Article  Google Scholar 

  7. Fujisawa, T., Ikegami, H., Inoue, K., Kawabata, Y., & Ogihara, T. (2005). Metabolism, 54, 387–390.

    Article  CAS  Google Scholar 

  8. Hollander, P. (1992). Drugs, 44, 47–53.

    Article  Google Scholar 

  9. Singh, S. K., Rai, P. K., Jaiswal, D., & Watal, G. (2008). Evidence-based Complementary and Alternative Medicine, 5, 415–420.

    Article  Google Scholar 

  10. Matsui, T., Ueda, T., Oki, T., Sugita, K., Terahara, N., & Matsumoto, K. (2001). Journal of Agricultural and Food Chemistry, 49, 1948–1951.

    Article  CAS  Google Scholar 

  11. Mcdougall, G. J., Shpiro, F., Doboson, P., Smith, P., Black, A., & Stewart, D. (2005). Journal of Agricultural and Food Chemistry, 53, 2760–2766.

    Article  CAS  Google Scholar 

  12. Sim, L., Jayakanthan, K., Mohan, S., Nasi, R., Johnston, B. D., Pinto, B. M., & Rose, D. R. (2010). Biochemistry, 49, 443–451.

    Article  CAS  Google Scholar 

  13. Tanko, Y., Eze, E. D., Jimoh, A., Yusuf, K., Mohammed, K. A., Balarabe, F., & Mohammed, A. (2012). European Journal of Experimental Biology, 2, 2015–2018.

    Google Scholar 

  14. Reddy, N. V. L. S., Anarthe, S. J., & Raghavendra, N. M. (2010). Journal of Research of Biomedical Sciences, 1, 72–75.

    Google Scholar 

  15. Ramkumar, K. M., Thayumanavan, B., Palvannan, T., & Rajaguru, P. (2010). Medicinal Chemistry Research, 19, 948–961.

    Article  CAS  Google Scholar 

  16. Gaurav, P., Gaurav, K., Karthik, L., Gyana, P. R., & Bhaskara, R. K. V. (2011). European Journal of Experimental Biology, 1, 156–162.

    Google Scholar 

  17. Marles, R. J., & Farnsworth, N. R. (1995). Phytomedicine, 2, 137–189.

    Article  CAS  Google Scholar 

  18. Akhtar, M. S., Khan, M. A., & Malik, M. T. (2002). Fitoterapia, 73, 623–628.

    Article  CAS  Google Scholar 

  19. Arambewela, L., Arawwawala, L., & Ratnasooriya, W. D. (2009). Pharmacognosy Magazine, 5, 412–418.

    Google Scholar 

  20. Prinya, W., Jiranun, C., & Anis, Z. (2012). Food Chemistry, 131, 964–971.

    Article  Google Scholar 

  21. Ghosh, S., & Rangan, L. (2013). Biotechnology, 3, 173–185.

    Google Scholar 

  22. Kirtikar, K. R., & Basu, B. D. (1996). Indian medicinal plants. Dehradun: International Book Distributors.

    Google Scholar 

  23. Kress, W. J., Liu, A. Z., Newman, M., & Li, Q. J. (2005). American Journal of Botany, 92, 167–178.

    Article  CAS  Google Scholar 

  24. Tushar Basak, S., Sarma, G. C., & Rangan, L. (2010). Journal of Ethnopharmacology, 132, 286–296.

    Article  Google Scholar 

  25. Ghosh, S., Padilla-González, G. F., & Rangan, L. (2013). Industrial Crops and Products, 49, 348–356.

    Article  CAS  Google Scholar 

  26. Ghosh, S., Indukuri, K., Bondalapati, S., Saikia, A. K., & Rangan, L. (2013). European Journal of Medicinal Chemistry, 66, 101–105.

    Article  CAS  Google Scholar 

  27. Matsui, T., Yoshimoto, C., Osajima, K., Oki, T., & Osajima, Y. (1996). Bioscience, Biotechnology, and Biochemistry, 60, 2019–2022.

    Article  CAS  Google Scholar 

  28. Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). Protein Engineering, 8, 127–134.

    Article  CAS  Google Scholar 

  29. Firman, K., Konoshita, T., Itai, A., & Sankawa, U. (1988). Phytochemistry, 27, 3887–3891.

    Article  CAS  Google Scholar 

  30. Chompoo, J., Upadhyay, A., Kishimoto, W., Makise, T., & Tawata, S. (2011). Food Chemistry, 129, 709–715.

    Article  CAS  Google Scholar 

  31. Upadhyay, A., Chompoo, J., Kishimoto, W., Makise, T., & Tawata, S. (2011). Journal of Agricultural and Food Chemistry, 59, 2857–2862.

    Article  CAS  Google Scholar 

  32. Abe, M., Ozawa, Y., Uda, Y., Yamada, F., Morimitsu, Y., Nakamura, Y., & Osawa, T. (2004). Bioscience, Biotechnology, and Biochemistry, 68, 1601–1604.

    Article  CAS  Google Scholar 

  33. Malek, S. N., Lee, G. S., Hong, S. L., Yaacob, H., Wahab, N. A., Weber, J. F., & Shah, S. A. A. (2011). Molecules, 16, 4539–4548.

    Article  CAS  Google Scholar 

  34. Luo, J. G., Ma, L., & Kong, L. Y. (2008). Bioorganic and Medicinal Chemistry, 16, 2912–2920.

    Article  CAS  Google Scholar 

  35. Reddy, P. P., Tiwari, A. K., Rao, R. R., Madhusudhana, K., Rao, R. S. V., Ali, A. Z., Babu, S. K., & Rao, M. J. (2009). Bioorganic and Medicinal Chemistry Letters, 19, 2562–2565.

    Article  Google Scholar 

  36. Kim, K. Y., Nam, K. A., Kurihara, H., & Kim, S. M. (2008). Phytochemistry, 69, 2820–2825.

    Article  CAS  Google Scholar 

  37. Gao, H., Huang, Y. N., Gao, B., & Kawabata, J. (2008). Bioscience, Biotechnology, and Biochemistry, 72, 601–603.

    Article  CAS  Google Scholar 

  38. Shobana, S., Sreerama, Y. N., & Malleshi, N. G. (2009). Food Chemistry, 15, 1268–1273.

    Article  Google Scholar 

  39. Tadera, K., Minami, Y., Takamatsu, K., & Matsuoka, T. J. (2006). Journal of Nutritional Science and Vitaminology, 52, 149–153.

    Article  CAS  Google Scholar 

  40. Sim, L., Quezada-Calvillo, R., Sterchi, E. E., Nichols, B. L., & Rose, D. R. (2008). Journal of Molecular Biology, 375, 782–792.

    Article  CAS  Google Scholar 

  41. Nichols, B. L., Avery, S., Sen, P., Swallo, D. M., Hahn, D., & Sterchi, E. (2003). Proceedings of the National Academy of Sciences of the United States of America, 100, 1432–1437.

    Article  CAS  Google Scholar 

  42. Lovering, A. L., Lee, S. S., Kim, Y. W., Withers, S. G., & Stry-Nadka, N. C. J. (2005). Journal of Biological Chemistry, 280, 2105–2115.

    Article  CAS  Google Scholar 

  43. Thomsen, R., & Christensen, M. (2006). Journal of Medicinal Chemistry, 49(11), 3315–3321.

    Article  CAS  Google Scholar 

  44. Ren, L., Qin, X., Cao, X., Wang, L., Bai, F., Bai, G., & Shen, Y. (2011). Protein & Cell, 2, 827–836.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SG thanks Department of Information Technology (DIT), Government of India for fellowship, and LR acknowledges funding by the DIT, Ministry of Information Technology, Government of India (DIT Grant No. DIT No: 0526/T/IITG/014/0809/38).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sudipta Ghosh or Latha Rangan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 586 kb)

Fig. S2

(DOCX 717 kb)

Fig. S3

(DOCX 287 kb)

Fig. S4

(DOCX 890 kb)

Fig. S5

(DOCX 778 kb)

Fig. S6

(DOCX 726 kb)

Fig. S7

(DOCX 344 kb)

Fig. S8

(DOCX 880 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Rangan, L. Molecular Docking and Inhibition Kinetics of α-glucosidase Activity by Labdane Diterpenes Isolated from Tora Seeds (Alpinia nigra B.L. Burtt.). Appl Biochem Biotechnol 175, 1477–1489 (2015). https://doi.org/10.1007/s12010-014-1366-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1366-4

Keywords

Navigation