Skip to main content
Log in

Purification and Characterization of a Cold Alkaline Protease from a Psychrophilic Pseudomonas aeruginosa HY1215

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel alkaline protease was purified from Pseudomonas aeruginosa HY1215 using ammonium sulfate, DEAE-Sepharose and Sephacryl S-200 gel filtration chromatographic techniques. The protease had a relative molecular weight of 32.8 KDa by SDS-PAGE, and the optimal temperature and pH for excellent stability and activity were determined as 25 °C and 10.0, respectively. Within the pH range of 7.0–11.0, the protease had a good stability, which could retain more than 80 % of its original activity; in the temperature range of 15–35 °C, the protease had a higher activity, and its activity at 20 °C could amount to 85 % of the maximum activity at 25 °C. Besides, the enzyme activity showed a valuable stability towards several commercially available surfactants (Tween-80, Tween-40, and Triton X-100) and bleaches (H2O2) even when their concentrations ranged up to 2.0 and 1.6 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ponnambalam, S., Neelamegam, A., Ayyappan, S., & Thangavel, B. (2012). Biologia, 67(4), 629–635.

    Article  Google Scholar 

  2. Anwar, A., & Mohammed, S. (1998). Bioresource Technology, 64, 139–144.

    Article  Google Scholar 

  3. Erikson, N. (1996). Industrial enzymology. 2nd. The Macmillan Press Ltd. London.

  4. Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59, 15–32.

    Article  CAS  Google Scholar 

  5. Zhu, H. Y., Tian, Y., Hou, Y. H., & Wang, T. H. (2009). Molecular Biology Reports, 36(8), 2169–2174.

    Article  CAS  Google Scholar 

  6. Wang, F., Hao, J. H., Yang, C. Y., & Sun, M. (2010). Applied Biochemistry and Biotechnology, 162(5), 1497–1505.

    Article  CAS  Google Scholar 

  7. Iram, S., Parvaiz, H. Q., & Shabir, A. R. (2012). India. World Journal of Microbiology and Biotechnology, 28(3), 1071–1079.

    Article  Google Scholar 

  8. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  9. Fogarty, W. M., Griffin, P. J., & Joyce, A. M. (1974). Process Biochemistry, 9, 27–29.

    CAS  Google Scholar 

  10. Stephane, D., Georges, F., Emmanuel, N., & Charles, G. (1994). Journal of Biological Chemistry, 26, 17448–17453.

    Google Scholar 

  11. Samal, B. B., Karan, B., Parker, C., & Stabinsky, Y. (1991). Enzyme and Microbial Technology, 13, 66–70.

    Article  CAS  Google Scholar 

  12. Kasana, R. C., & Yadav, S. K. (2007). Current Microbiology, 54, 224–229.

    Article  CAS  Google Scholar 

  13. Kumar, C. G., Tiwari, M. P., & Jany, K. D. (1999). Process Biochemistry, 34, 441–449.

    Article  CAS  Google Scholar 

  14. Steel, D. B., Fiske, M. J., Steele, B. P., & Kelley, V. C. (1992). Enzyme and Microbial Technology, 14, 358–360.

    Article  Google Scholar 

  15. Banerje, U. C., Sani, R. K., & Azmi, W. (1999). Process Biochemistry, 35, 213–219.

    Article  Google Scholar 

  16. Beg, K. B., Sahai, V., & Gupta, R. (2003). Process Biochemistry, 39, 2003–2209.

    Article  Google Scholar 

  17. Kumar, D., & Bhalla, T. C. (2004). Indian Journal of Experimental Biology, 42, 515–521.

    CAS  Google Scholar 

  18. Miyaji, T., Otta, Y., & Shibata, T. (2005). Letters in Applied Microbiology, 41, 253–257.

    Article  CAS  Google Scholar 

  19. Takami, H., Akiba, T., & Horikoshi, K. (1989). Applied Microbiology and Biotechnology, 30, 120–124.

    Article  CAS  Google Scholar 

  20. Papagianni, M., & Sergelidis, D. (2014). Applied Biochemistry and Biotechnology, 172, 3926–3938.

    Article  CAS  Google Scholar 

  21. Niyonzima, F. N., & More, S. (2014). Preparative Biochemistry and Biotechnology, 44(7), 738–759.

    Article  CAS  Google Scholar 

  22. Ghareib, M., Fawzi, E. M., & Aldossary, N. A. (2014). Annals of Microbiology, 64(2), 859–867.

    Article  CAS  Google Scholar 

  23. Raval, V. H., Pillai, S., Rawal, C. M., & Singh, S. P. (2014). Process Biochemistry, 49(6), 955–962.

    Article  CAS  Google Scholar 

  24. Oberoi, R., Beg, Q. K., & Puri, S. (2001). World Journal of Microbiology and Biotechnology, 17, 493–497.

    Article  CAS  Google Scholar 

  25. Saeki, K., Hitomi, J., Okuda, M., & Hatada, Y. (2002). Extremophiles, 6, 65–72.

    Article  CAS  Google Scholar 

  26. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Microbiology and Molecular Biology Reviews, 62, 597–635.

    CAS  Google Scholar 

  27. Kulakova, L., Galkin, A., Nakayama, T., Nishino, T., & Esaki, N. (2003). Journal of Molecular Catalysis B-Enzyme, 22, 113–117.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work has been supported by National Natural Science Foundation of China (No. 41376175) and Qingdao Municipal Science and Technology Plan Project (14-2-4-11-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, JH., Sun, M. Purification and Characterization of a Cold Alkaline Protease from a Psychrophilic Pseudomonas aeruginosa HY1215. Appl Biochem Biotechnol 175, 715–722 (2015). https://doi.org/10.1007/s12010-014-1315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1315-2

Keywords

Navigation