Skip to main content
Log in

Structural Characterizations of Metal Ion Binding Transcriptional Regulator CueR from Opportunistic Pathogen Pseudomonas aeruginosa to Identify Its Possible Involvements in Virulence

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen present in the environment. It is responsible behind a variety of diseases specifically the multidrug-resistant nosocomial infections and chronic lung infections in cystic fibrosis patients. One of the vital genes of the organism responsible for its multidrug-resistant behavior is the gene PA3523 which codes for the multidrug efflux transporter. The expression of PA3523 is regulated by the dimeric transcription factor CueR having helix-turn-helix DNA binding motif. So far, there have been no previous reports that depict the characterization of CueR protein from P. aeruginosa from a structural point of view. In the present work, an attempt has been made to characterize CueR protein by structural bioinformatics approach. The dimeric structure of CueR was built by comparative modeling technique. The dimeric model of CueR was then docked onto the corresponding promoter region of the PA3523 gene encoding the multidrug efflux transporter. The docked complex of promoter DNA with CueR protein was subjected to molecular dynamics simulations to identify the mode of DNA-protein interactions. So far, this is the first report that depicts the mechanistic details of gene regulation by CueR protein. This work may therefore be useful to illuminate the still obscure molecular mechanism behind disease propagation by P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Lyczak, J. B., Cannon, C. L., & Pier, G. B. (2000). Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes and Infection, 2, 1051–1060.

    Article  CAS  Google Scholar 

  2. Emerson, J., Rosenfeld, M., McNamara, S., Ramsey, B., & Gibson, R. L. (2002). Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatric Pulmonology, 34, 91–100.

    Article  Google Scholar 

  3. Hart, C. A., & Winstanley, C. (2002). Persistent and aggressive bacteria in the lungs of cystic fibrosis children. British Medical Bulletin, 61, 81–96.

    Article  Google Scholar 

  4. Cheng, K., Smyth, R. L., Govan, J. R. E., Doherty, C., et al. (1996). Spread of beta-lactam resistant Pseudomonas aeruginosa in cystic fibrosis clinic. The Lancet, 348, 639–642.

    Article  CAS  Google Scholar 

  5. Workentine, M., & Surette, M. G. (2011). Complex Pseudomonas population structure in cystic fibrosis airway infections. American Journal of Respiratory and Critical Care Medicine, 183, 1581–1583.

    Article  Google Scholar 

  6. Smith, E. E., Buckley, D. G., Wu, Z., Saenphimmachak, C., & Hoffman, L. R. (2006). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proceedings of the National Academy of Science, 103, 8487–8492.

    Article  CAS  Google Scholar 

  7. Winstanley, C., Langille, M. G. I., Fothergill, J. L., Kukavica-Ibrulj, I., Paradis-Bleau, C., et al. (2009). Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Research, 19, 12–23.

    Article  CAS  Google Scholar 

  8. Klockgether, J., Cramer, N., Wiehlmann, L., Davenport, C. F., & Tümmler, B. (2011). Pseudomonas aeruginosa genomic structure and diversity. Frontiers in Microbiology, 2, 150.

    Article  CAS  Google Scholar 

  9. Carter, M. E. K., Fothergill, J. L., Walshaw, M. J., Rajakumar, K., & Kadioglu, A. (2010). A subtype of a Pseudomonas aeruginosa cystic fibrosis epidemic strain exhibits enhanced virulence in a murine model of acute respiratory infection. Journal of Infectious Diseases, 202, 935–942.

    Article  Google Scholar 

  10. Salunkhe, P., Smart, C. H. M., Morgan, J. A. W., Panagea, S., Walshaw, M. J., et al. (2002). A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. Journal of Bacteriology, 187, 4908–4920.

    Article  Google Scholar 

  11. Winsor, G. L., Rossum, T. V., Lo, R., Khaira, B., Whiteside, M. D., Hancock, R. E. W., & Brinkman, F. S. L. (2009). Pseudomonas genome database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Research, 37, D483–D488.

    Article  CAS  Google Scholar 

  12. Kılıç, S., White, E. R., Sagitova, D. M., Cornish, J. P., & Erill, I. (2014). CollecTF: a database of experimentally validated transcription factor-binding sites in Bacteria. Nucleic Acids Research, 42(D1), D148–D155.

    Article  Google Scholar 

  13. Thaden, J. T., Lory, S., & Gardner, T. S. (2010). Quorum-sensing regulation of a copper toxicity system in Pseudomonas aeruginosa. Journal of Bacteriology, 192, 2557–2568.

    Article  CAS  Google Scholar 

  14. Berman, H. M. (2008). The protein data bank: a historical perspective. Acta Crystallographica. Section A, 64, 88–95.

    CAS  Google Scholar 

  15. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  Google Scholar 

  16. Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234, 779–815.

    Article  CAS  Google Scholar 

  17. Brooks, B. R., Bruccoleri, R. E., & Olafson, B. D. (1983). CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. Journal of Comparative Chemistry, 4, 187–217.

    Article  CAS  Google Scholar 

  18. Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404.

    Article  CAS  Google Scholar 

  19. Dauber-Osguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M., & Hagler, A. T. (1988). Structure and energetics of ligand binding to proteins: E. coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins: Structure, Function, and Genetics, 4, 31–47.

    Article  CAS  Google Scholar 

  20. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). Procheck—a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.

    Article  CAS  Google Scholar 

  21. Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1968). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–96.

    Article  Google Scholar 

  22. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., et al. (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Research, 33, W363–W367.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to the BIF Center, Department of Biochemistry and Biophysics, University of Kalyani, for providing the necessary equipment and workstation to carry out the experiments. The author would like to acknowledge the DST-PURSE program 2012-2015 going on in the Department of Biochemistry and Biophysics, University of Kalyani, and the DBT (project no. BT/PR6869/BID/7/417/2013) for the infrastructural support. The suggestions by the anonymous referee for the betterment of the manuscript are duly acknowledged.

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angshuman Bagchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagchi, A. Structural Characterizations of Metal Ion Binding Transcriptional Regulator CueR from Opportunistic Pathogen Pseudomonas aeruginosa to Identify Its Possible Involvements in Virulence. Appl Biochem Biotechnol 175, 649–656 (2015). https://doi.org/10.1007/s12010-014-1304-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1304-5

Keywords

Navigation