Skip to main content
Log in

The Effect of Nonenzymatic Protein on Lignocellulose Enzymatic Hydrolysis and Simultaneous Saccharification and Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nonenzymatic protein was added to cellulase hydrolysis and simultaneous saccharification and fermentation (SSF) of different biomass materials. Adding bovine serum albumin (BSA) and corn steep before cellulase enhanced enzyme activity in solution and increased cellulose and xylose conversion rates. The cellulose conversion rate of filter paper hydrolysis was increased by 32.5 % with BSA treatment. When BSA was added before cellulase, the remaining activity in the solution was higher than that in a control without BSA pretreatment. During SSF with pretreated rice straw as the substrate, adding 1.0 mg/mL BSA increased the ethanol yield by 13.6 % and final xylose yield by 42.6 %. The results indicated that lignin interaction is not the only mechanism responsible for the positive BSA effect. BSA had a stabilizing effect on cellulase and relieved cumulative sugar inhibition of enzymatic hydrolysis of biomass materials. Thus, nonenzymatic protein addition represents a promising strategy in the biorefining of lignocellulose materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Applied Microbiology and Biotechnology, 56, 17–34.

    Article  CAS  Google Scholar 

  2. Yang, B., & Wyman, C. E. (2008). Biofuels, Bioproducts and Biorefining, 2, 26–40.

    Article  CAS  Google Scholar 

  3. Lynd, L. R., Laser, M. S., Bransby, D., Dale, B. E., Davison, B., Hamilton, R., Keller, M., McMillan, J. D., Sheehan, J., & Wyman, C. E. (2008). Nature Biotechnology, 26, 169–172.

    Article  CAS  Google Scholar 

  4. Mooney, C. A., Mansfield, S. D., Touhy, M. G., & Saddler, J. N. (1998). Bioresource Technology, 64, 113–119.

    Article  CAS  Google Scholar 

  5. Ramos, L. P., Nazhad, M. M., & Saddler, J. N. (1993). Enzyme and Microbial Technology, 15, 821–831.

    Article  CAS  Google Scholar 

  6. Rollin, J. A., Zhu, Z., Sathitsuksanoh, N., & Zhang, Y. P. (2011). Biotechnology and Bioengineering, 108, 22–30.

    Article  CAS  Google Scholar 

  7. Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Enzyme and Microbial Technology, 31, 353–364.

    Article  CAS  Google Scholar 

  8. Kim, S., & Holtzapple, M. T. (2006). Bioresource Technology, 97, 583–591.

    Article  CAS  Google Scholar 

  9. Yang, B., & Wyman, C. E. (2006). Biotechnology and Bioengineering, 94, 611–617.

    Article  CAS  Google Scholar 

  10. Seo, D., Fujita, H., & Sakoda, A. (2011). Bioresource Technology, 102, 9605–9612.

    Article  CAS  Google Scholar 

  11. Kaar, W. E., & Holtzapple, M. T. (1998). Biotechnology and Bioengineering, 59, 419–427.

    Article  CAS  Google Scholar 

  12. Wang, H., Mochidzuki, K., Kobayashi, S., Hiraide, H., Wang, X., & Cui, Z. (2013). Applied Biochemistry and Biotechnology, 170, 541–551.

    Article  CAS  Google Scholar 

  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  14. Guo, P., Wang, X., Zhu, W., Yang, H., Cheng, X., & Cui, Z. (2008). Journal of Environmental Sciences, 20, 109–114.

    Article  CAS  Google Scholar 

  15. Öhgren, K., Bura, R., Saddler, J., & Zacchi, G. (2007). Bioresource Technology, 98, 2503–2510.

    Article  Google Scholar 

  16. Philippidis, G. P., Smith, T. K., & Wyman, C. E. (1993). Biotechnology and Bioengineering, 41, 846–853.

    Article  CAS  Google Scholar 

  17. Katahira, S., Mizuike, A., Fukuda, H., & Kondo, A. (2006). Applied Microbiology and Biotechnology, 72, 1136–1143.

    Article  CAS  Google Scholar 

  18. Buaban, B., Inoue, H., Yano, S., Tanapongpipat, S., Ruanglek, V., Champreda, V., Pichyangkura, R., Rengpipat, S., & Eurwilaichitr, L. (2010). Journal of Bioscience and Bioengineering, 110, 18–25.

    Article  CAS  Google Scholar 

  19. Ghosh, P., Pamment, N. B., & Martin, W. R. B. (1982). Enzyme and Microbial Technology, 4, 425–430.

    Article  CAS  Google Scholar 

  20. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Enzyme and Microbial Technology, 28, 835–844.

    Article  CAS  Google Scholar 

  21. Gusakov, A. V., & Sinitsyn, A. P. (1992). Biotechnology and Bioengineering, 40, 663–671.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JST/JICA-SATREPS, “Sustainable Integration of Local Agriculture and Biomass Industries,” and a grant from the National High Technology Research and Development Program of China (863 Program) (No. 2012AA101803). The English language was reviewed by Enago (www.Enago.jp).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Mochidzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Kobayashi, S., Hiraide, H. et al. The Effect of Nonenzymatic Protein on Lignocellulose Enzymatic Hydrolysis and Simultaneous Saccharification and Fermentation. Appl Biochem Biotechnol 175, 287–299 (2015). https://doi.org/10.1007/s12010-014-1242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1242-2

Keywords

Navigation