Skip to main content
Log in

Oxidative Stress Protection and Glutathione Metabolism in Response to Hydrogen Peroxide and Menadione in Riboflavinogenic Fungus Ashbya gossypii

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ashbya gossypii is a plant pathogen and a natural overproducer of riboflavin and is used for industrial riboflavin production. A few literature reports depict a link between riboflavin overproduction and stress in this fungus. However, the stress protection mechanisms and glutathione metabolism are not much explored in A. gossypii. In the present study, an increase in the activity of catalase and superoxide dismutase was observed in response to hydrogen peroxide and menadione. The lipid peroxide and membrane lipid peroxide levels were increased by H2O2 and menadione, indicating oxidative damage. The glutathione metabolism was altered with a significant increase in oxidized glutathione (GSSG), glutathione peroxidase (GPX), glutathione S transferase (GST), and glutathione reductase (GR) and a decrease in reduced glutathione (GSH) levels in the presence of H2O2 and menadione. Expression of the genes involved in stress mechanism was analyzed in response to the stressors by semiquantitative RT-PCR. The messenger RNA (mRNA) levels of CTT1, SOD1, GSH1, YAP1, and RIB3 were increased by H2O2 and menadione, indicating the effect of stress at the transcriptional level. A preliminary bioinformatics study for the presence of stress response elements (STRE)/Yap response elements (YRE) depicted that the glutathione metabolic genes, stress genes, and the RIB genes hosted either STRE/YRE, which may enable induction of these genes during stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stahmann, K. P., Revuelta, J. L., & Suelberger, H. (2000). Three biotechnical process using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Applied Microbiology and Biotechnology, 53, 509–516.

    Article  CAS  Google Scholar 

  2. Schlosser, T., Wiesenberg, A., Gatgens, C., Funke, A., Viets, U., Vijayalakshmi, S., Nieland, S., & Stahmann, K. P. (2007). Growth stress triggers riboflavin overproduction in Ashbya gossypii. Applied Microbiology and Biotechnology, 6, 569–578.

    Article  Google Scholar 

  3. Stahmann, K. P., Herbert, N., Henning, A., Revuelta, J., Nicole, M., Christina, S., Cornelia, G., Andreas, W., & Thomas, S. (2001). Riboflavin, overproduced during sporulation of Ashbya gossypii, protects its hyaline spores against ultraviolet light. Environmental Microbiology, 3, 545–550.

    Article  CAS  Google Scholar 

  4. Kavitha, S., & Chandra, T. S. (2009). Effect of vitamin E and menadione supplementation on riboflavin production and stress parameters in Ashbya gossypii. Process Biochemistry, 44, 934–938.

    Article  CAS  Google Scholar 

  5. Walther, A., & Wendland, J. (2012). Yap1-dependent oxidative stress response provides a link to riboflavin production in Ashbya gossypii. Fungal Genetics and Biology, 49, 697–707.

    Article  CAS  Google Scholar 

  6. Herrero, E., Ros, J., Bellí, G., & Cabiscol, E. (2008). Redox control and oxidative stress in yeast cells. Biochimica et Biophysica Acta, 1780, 1217–1235.

    Article  CAS  Google Scholar 

  7. Lee, J., Dawes, I. W., & Jung, H. (1995). Adaptive response of Schizosaccharomyces pombe to hydrogen peroxide and menadione. Microbiology, 141, 3127–3132.

    Article  CAS  Google Scholar 

  8. Kreiner, M., Harvey, L. M., & McNeil, B. (2002). Oxidative stress response of a recombinant Aspergillus niger to exogenous menadione and H2O2 addition. Enzymology and Microbial Technology, 30, 346–353.

    Article  CAS  Google Scholar 

  9. Emri, T., Posci, I., & Szentirmai, A. (1997). Glutathione metabolism and protection against oxidative stress caused by peroxides in Penicillium chrysogenum. Free Radical Biology and Medicine, 23, 809–814.

    Article  CAS  Google Scholar 

  10. Han, Y. H., & Park, W. H. (2009). The effects of N-acetyl cysteine, buthionine sulfoximine, diethyldithiocarbamate or 3-amino-1,2,4-triazole on antimycin A-treated Calu-6 lung cells in relation to cell growth, reactive oxygen species and glutathione. Oncology Reports, 22, 385–391.

    CAS  Google Scholar 

  11. Durusoy, M., Emel, K. Z., & Kamile, O. (2002). Assessment of the relationship between the antimutagenic action of riboflavin and glutathione and the levels of antioxidant enzymes. Journal of Nutritional Biochemistry, 13, 598–602.

    Article  CAS  Google Scholar 

  12. Burgess, M. C., Smid, E. J., & Sinderen, D. (2009). Bacterial vitamin B2, B11 and B12 overproduction: an overview. International Journal of Food Microbiology, 133, 1–7.

    Article  CAS  Google Scholar 

  13. Masella, R., Di Benedetto, R., Vari, R., Filesi, C., & Giovannini, C. (2005). Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. Journal of Nutritional Biochemistry, 16, 577–586.

    Article  CAS  Google Scholar 

  14. Altmann-Johl, R., & Philippsen, P. (1996). AgTHR4, a new selection marker for transformation of the filamentous fungus Ashbya gossypii, maps in a four-gene cluster that is conserved between Ashbya gossypii and Saccharomyces cerevisiae. Molecular and General Genetics, 1996(250), 69–80.

    Google Scholar 

  15. McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244, 6049–6055.

    CAS  Google Scholar 

  16. Pinto, M. C., Mata, A. M., & Lopez-Barea, J. (1984). Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions. Archives of Biochemistry and Biophysics, 1984(228), 1–12.

    Article  Google Scholar 

  17. Margareta, W., Claes, G., Christer, V., & Bengt, M. (1987). Glutathione transferases from human liver. Methods in Enzymology, 113, 499–504.

    Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  19. Emri, T., Pocsi, I., & Szentirmai, A. (1999). Analysis of the oxidative stress response of Penicillium chrysogenum to menadione. Free Radical Research, 30, 125–132.

    Article  CAS  Google Scholar 

  20. Dietrich, F. S., Voegeli, S., Brachat, S., Lerch, A., Gates, K., Steiner, S., Mohr, C., Pohlmann, R., Luedi, P., Choi, S., Wing, R. A., Flavier, A., Gaffney, T. D., & Philippsen, P. (2004). The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science, 304, 304–307.

    Article  CAS  Google Scholar 

  21. Schlosser, T., Schmidt, G., & Stahmann, K. P. (2001). Transcriptional regulation of 3,4-dihydroxy-2-butanone 4-phosphate synthase. Microbiology, 147, 3377–3386.

    CAS  Google Scholar 

  22. Sugiyama, K., Shingo, I., & Yoshiharu, I. (2000). The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. The Journal of Biological Chemistry, 275, 15535–15540.

    Article  CAS  Google Scholar 

  23. Estruch, F. (2000). Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiology Reviews, 24, 469–486.

    Article  CAS  Google Scholar 

  24. Nanou, K., & Roukas, T. (2010). Oxidative stress and morphological changes of Blakeslea trispora induced by butylated hydroxytoluene during carotene production. Applied Biochemistry and Biotechnology, 160, 2415–2423.

    Article  CAS  Google Scholar 

  25. Protchenko, O. V., Boretsky yu, R., Romanyuk, T. M., & Federovych, D. V. (2000). Over synthesis of riboflavin by yeast Pichia guilliermondii in response to oxidative stress. Ukrainskii Biokhimicheskii Zhurnal, 72, 1093–1099.

    Google Scholar 

  26. Demple, B. (1996). Redox signalling and gene control in the Escherichia coli SOX RS oxidative stress regulon—a review. Gene, 179, 53–57.

    Article  CAS  Google Scholar 

  27. Flattery-O’Brien, J., Collinson, L. P., & Dawes, I. W. (1993). Saccharomyces cerevisiae has an inducible response to menadione, which differs from that to hydrogen peroxide. Journal of General Microbiology, 139, 501–507.

    Article  Google Scholar 

  28. Angelova, M. B., Pashova, S. B., Spasova, B., Vassilev, S. B., & Slokoska, L. S. (2005). Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycological Research, 109, 150–158.

    Article  CAS  Google Scholar 

  29. Katynski, A. L., Vijayan, M. M., Kennedy, S. W., & Moon, T. W. (2004). 3,39,3,49,5-Pentachlorobiphenyl 9 PCB 126 impacts hepatic lipid. Comparative Biochemistry and Physiology Part C, 137, 81–93.

    Article  CAS  Google Scholar 

  30. Jung-Hee, H., Mi-Ji, K., & Mo-Ra, P. (2004). Effect of vitamin E on oxidative stress and membrane fluidity in brain of streptozotocin induced-diabetic rats. Clinica Chimica Acta, 340, 107–115.

    Article  Google Scholar 

  31. Forster, C., Revuelta, J. L., & Kramer, R. (2001). Carrier-mediated transport of riboflavin in Ashbya gossypii. Applied Microbiology and Biotechnology, 55, 85–89.

    Article  CAS  Google Scholar 

  32. Blazhenko, O. V. (2014). Glutathione deficiency leads to riboflavin oversynthesis in the yeast Pichia guilliermondii. Curr Microbiol, 69, 10–18.

    Article  CAS  Google Scholar 

  33. Wingsle, G., & Karpinski, S. (1996). Differential redox regulation by glutathione reductase and Cu Zn-superoxide dismutase gene expression in Pinus sylvestris L. needles. Planta, 198, 151–157.

    Article  CAS  Google Scholar 

  34. Srikanth, C. V., Purva, V., Bourbouloux, A., Delrot, S., & Bachhawat, A. K. (2005). Multiple cis-regulatory elements and yeast regulatory network are required for the regulation of the yeast glutathione transporter, Hgt1p. Current Genetics, 47, 345–358.

    Article  CAS  Google Scholar 

  35. Li, Y., Wi, G., & Chen, J. (2004). Glutathione: a review on biotechnological production. Applied Microbiology and Biotechnology, 66, 233–242.

    Article  CAS  Google Scholar 

  36. Emri, T., Molnar, Z., Pusztahelyi, T., Rosen, S., & Posci, I. (2004). Effect of vitamin E on autolysis and sporulation of Aspergillus nidulans. Applied Biochemistry and Biotechnology, 118, 337–350.

    Article  CAS  Google Scholar 

  37. Karkonen, A., Warinowski, T., Teeri, T. H., Simola, L. K., & Fry, S. C. (2009). On the mechanism of apoplastic H2O2 production during lignin formation and elicitation in cultured spruce cells peroxidases after elicitation. Planta, 230, 553–567.

    Article  Google Scholar 

  38. Baek, Y., Kim, Y., Yim, H., & Kang, S. (2004). Disruption of Q-glutamylcysteine synthetase results in absolute glutathione auxotrophy and apoptosis in Candida albicans. FEBS Letters, 556, 47–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge IIT Madras and the Department of Science and Technology, India, for the funds provided under the WOS-A scheme, which was useful to conduct the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, S., Chandra, T.S. Oxidative Stress Protection and Glutathione Metabolism in Response to Hydrogen Peroxide and Menadione in Riboflavinogenic Fungus Ashbya gossypii . Appl Biochem Biotechnol 174, 2307–2325 (2014). https://doi.org/10.1007/s12010-014-1188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1188-4

Keywords

Navigation