Skip to main content

Advertisement

Log in

Potential of Kalopanax septemlobus Leaf Extract in Synthesis of Silver Nanoparticles for Selective Inhibition of Specific Bacterial Strain in Mixed Culture

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) were synthesised using Kalopanax septemlobus plant leaf extracts. UV-visible spectrophotometric, Fourier-transform infrared, electron dispersive X-ray spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses confirmed synthesis of AgNPs. TEM micrographs revealed presence of well-dispersed AgNPs predominantly of small size and different shapes with an average particle size of 30.8 nm. Antimicrobial susceptibility tests of AgNP treatments revealed variability in sensitivity of bacteria Bacillus cereus and Saccharophagus degradans under study. Minimum inhibitory concentration (MIC) values of the AgNPs for B. cereus and S. degradans were found to be 30 and 10 μg/mL, respectively. The mixed culture of B. cereus and S. degradans treated with AgNPs at 10 μg/mL showed increase in growth with time, suggesting survival of bacteria in liquid media. The plating of mixed culture before AgNP treatment showed presence of both bacteria, but 24-h-old mixed culture treated with AgNPs at the concentration of 10 μg/mL showed presence of B. cereus colonies. SEM micrographs revealed damage to S. degradans cells but no effect on B. cereus cells after AgNP treatment. Confocal microscopic observations of AgNP-treated mixed cultures by Nile blue A staining indicated intact polyhydroxyalkanoates producing flourescent cells of B. cereus but damage and deformities in S. degradans cells. This study suggests that AgNPs can selectively inhibit growth of S. degradans and retain B. cereus at MIC of S. degradans. This report is a case study for selective inhibition of one bacteria and growth of the other in a culture using plant-synthesized silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fogh, J., Holmgren, N. B., & Ludovici, P. P. (1971). In Vitro, 7, 26–41.

    Article  CAS  Google Scholar 

  2. Chen, J., Bergevin, J., Kiss, R., Walker, G., Battistoni, T., Lufburrow, P., Lam, H., & Vinther, A. (2012). PDA Journal of Pharmaceutical Science and Technology, 66, 580–591.

    Article  Google Scholar 

  3. Skinner, K. A., & Leathers, T. D. (2004). Journal of Industrial Microbiology and Biotechnology, 31, 401–408.

    Article  CAS  Google Scholar 

  4. Croughan, M., Delfosse, S., & Svay, K. (2014). Pharmaceutical Bioprocessing, 2, 23–25.

    Article  Google Scholar 

  5. Gibson, B. R., Lawrence, S. J., Leclaire, J. P., Powell, C. D., & Smart, K. A. (2007). FEMS Microbiology Reviews, 31, 535–569.

    Article  CAS  Google Scholar 

  6. Simpson, W. J., & Smith, A. R. (1992). Journal of Applied Bacteriology, 72, 327–334.

    Article  CAS  Google Scholar 

  7. Albers, E., Johansson, E., Franzén, C. J., & Larsson, C. (2011). Biotechnology for Biofuels, 4, 59.

    Article  CAS  Google Scholar 

  8. Zhang, L., Pornpattananangkul, D., Hu, C. M., & Huang, C. M. (2010). Current Medicinal Chemistry, 17, 585–594.

    Article  CAS  Google Scholar 

  9. Borase, H. P., Patil, C. D., Salunkhe, R. B., Suryawanshi, R. K., Salunke, B. K., & Patil, S. V. (2014). Biotechnology and Applied Biochemistry. doi:10.1002/bab.1189.

    Google Scholar 

  10. Huh, A. J., & Kwon, Y. J. (2011). Journal of Controlled Release, 156, 128–145.

    Article  CAS  Google Scholar 

  11. Pal, S., Tak, Y. K., & Song, J. M. (2007). Applied and Environmental Microbiology, 73, 1712–1720.

    Article  CAS  Google Scholar 

  12. Zhou, Y., Kong, Y., Kundu, S., Cirillo, J. D., & Liang, H. (2012). Journal of Nanobiotechnology, 3, 19. doi:10.1186/1477-3155-10-19.

    Article  Google Scholar 

  13. Patil, S. V., Borase, H. P., Patil, C. D., & Salunke, B. K. (2012). Applied Biochemistry and Biotechnology, 167, 776–790.

    Article  CAS  Google Scholar 

  14. Dhas, S. P., John, S. P., Mukherjee, A., & Chandrasekaran, N. (2014). Biotechnology and Applied Biochemistry. doi:10.1002/bab.1161.

    Google Scholar 

  15. Alva Munoz, L. E., & Riley, M. R. (2008). Biotechnology and Bioengineering, 100, 882–888.

    Article  Google Scholar 

  16. Mizuno, K., Ohta, A., Hyakutake, M., Ichinomiya, Y., & Tsuge, T. (2010). Polymer Degradation and Stability, 95, 1335–1339.

    Article  CAS  Google Scholar 

  17. Jung, Y. H., Kim, H. K., Song, D. S., Choi, I. G., Yang, T. H., Lee, H. J., Seung, D., & Kim, K. H. (2014). Bioprocess and Biosystems Engineering, 37, 707–710.

    Article  CAS  Google Scholar 

  18. Santos-Gandelman, J. F., Cruz, K., Crane, S., Muricy, G., Giambiagi-deMarval, M., Barkay, T., & Laport, M. S. (2014). Current Microbiology. doi:10.1007/s00284-014-0597-5.

    Google Scholar 

  19. Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S., & Galdiero, M. (2014). Applied Microbiology and Biotechnology, 98, 1951–1961.

    Article  CAS  Google Scholar 

  20. Borase, H. P., Salunke, B. K., Salunkhe, R. B., Patil, C. D., Hallsworth, J. E., Kim, B. S., & Patil, S. V. (2014). Applied Biochemistry and Biotechnology, 173, 1–29.

    Article  CAS  Google Scholar 

  21. Song, J. Y., & Kim, B. S. (2009). Bioprocess and Biosystems Engineering, 32, 79–84.

    Article  Google Scholar 

  22. Iravani, S. (2011). Green Chemistry, 13, 2638–2650.

    Article  CAS  Google Scholar 

  23. Willis, J. C. (1973). A dictionary of the flowering plants and ferns (8th ed.). London: Cambridge University Press.

    Google Scholar 

  24. Medical New College of Jiangsu (MNCJ). (1986). Encyclopedia of chinese herbs. Shanghai: Shanghai Science & Technology Publication.

    Google Scholar 

  25. SDP v4. 1 (32 bit) Copyright 2004, XPS International, LLC.

  26. Taylor, L. E., Henrissat, B., Coutinho, P. M., Ekborg, N. A., Hutcheson, S. W., & Weiner, R. M. (2006). Journal of Bacteriology, 188, 3849–3861.

    Article  CAS  Google Scholar 

  27. Ostle, A. G., & Holt, J. G. (1982). Applied and Environmental Microbiology, 44, 238–241.

    CAS  Google Scholar 

  28. Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Journal of Colloid and Interface Science, 275, 496–502.

    Article  CAS  Google Scholar 

  29. Ghosh, S., Patil, S., Ahire, M., Kitture, R., Jabgunde, A., Kale, S., Pardesi, K., Cameotra, S. S., Bellare, J., Dhavale, D. D., & Chopade, B. A. (2012). International Journal of Nanomedicine, 7, 483–496.

    CAS  Google Scholar 

  30. Salunkhe, R. B., Patil, S. V., Salunke, B. K., Patil, C. D., & Sonawane, A. M. (2011). Applied Biochemistry and Biotechnology, 165, 221–234.

    Article  CAS  Google Scholar 

  31. Mistry, B. D. (2009). A handbook of spectroscopic data. New Delhi: Oxford Book Company.

    Google Scholar 

  32. Kozlowski, T. R., & Bartholomew, R. F. (1968). Inorganic Chemistry, 7, 2247–2254.

    Article  CAS  Google Scholar 

  33. Forough, M., & Farhadi, K. (2010). Turkish Journal of Engineering Environmental Sciences, 34, 281–287.

    CAS  Google Scholar 

  34. Sathishkumar, M., Sneha, K., & Yun, Y. S. (2010). Bioresource Technology, 101, 7958–7965.

    Article  CAS  Google Scholar 

  35. Nabikhan, A., Kandasamy, K., Raj, A., & Alikunhi, N. M. (2010). Colloids and Surfaces B: Biointerfaces, 79, 488–493.

    Article  CAS  Google Scholar 

  36. Huang, J., Li, Q., Sun, D., et al. (2007). Nanotechnology, 18, 105104–105114.

    Article  Google Scholar 

  37. Lai, Y., Zhang, H., Xie, K., Gong, D., Tang, Y., Sun, L., Lin, C., & Chen, Z. (2010). New Journal of Chemistry, 34, 1335–1340.

    Article  CAS  Google Scholar 

  38. Sumesh, E., Bootharaju, M. S., Anshup, S., & Pradeep, T. (2011). Journal of Hazardous Materials, 189, 450–457.

    Article  CAS  Google Scholar 

  39. Lopez-Salido, I., Lim, D. C., & Kim, Y. D. (2006). Surface Science, 588, 6–18.

    Article  Google Scholar 

  40. Prietoa, P., Nistora, V., Nounehb, K., Oyamac, M., Abd-Lefdild, M., & Diaza, R. (2012). Applied Surface Science, 258, 8807–8813.

    Article  Google Scholar 

  41. Dibrov, P., Dzioba, J., Gosink, K. K., & Hase, C. C. (2002). Antimicrobial Agents and Chemotherapy, 46, 2668–2670.

    Article  CAS  Google Scholar 

  42. Shahverdi, A., Fakhimi, A., Shahverdi, H., & Minaian, S. (2007). Nanomedicine, 3, 168–171.

    Article  CAS  Google Scholar 

  43. Quelemes, P. V., Araruna, F. B., de Faria, B. E., Kuckelhaus, S. A., da Silva, D. A., Mendonça, R. Z., Eiras, C., Soares, M. J. S., & Leite, J. R. S. (2013). International Journal of Molecular Sciences, 14, 4969–4981.

    Article  CAS  Google Scholar 

  44. Ryan, K. J., & Ray, C. G. (2004). Sherris medical microbiology (4th ed.). New York: McGraw Hill.

    Google Scholar 

  45. Howard, M. B., Ekborg, N. A., Taylor, L. E., Weiner, R. M., & Hutcheson, S. W. (2003). Journal of Bacteriology, 185, 3352–3360.

    Article  CAS  Google Scholar 

  46. Ekborg, N. A., Taylor, L. E., Longmire, A. G., Henrissat, B., Weiner, R. M., & Hutcheson, S. W. (2006). Applied and Environmental Microbiology, 72, 3396–3405.

    Article  CAS  Google Scholar 

  47. Kawahara, K., Tsuruda, K., Morishita, M., & Uchida, M. (2000). Dental Materials, 16, 452–455.

    Article  CAS  Google Scholar 

  48. Martinez-Castanon, G. A., Nino-Martinez, N., Martines-Gutierrez, F., Martinez-Mendoza, J. R., & Ruiz, F. (2008). Journal of Nanoparticle Research, 10, 1343–1348.

    Article  CAS  Google Scholar 

  49. Roberts, T. A., Baird-Parker, A. C., & Tompkin, R. B. (1996). Characteristics of microbial pathogens (p. 24). London: Blackie Academic & Professional.

    Google Scholar 

  50. Ekborg, N. A., Gonzalez, J. M., Howard, M. B., Taylor, L. E., Hutcheson, S. W., & Weiner, R. M. (2005). International Journal of Systematic and Evolutionary Microbiology, 55, 1545–1549.

    Article  CAS  Google Scholar 

  51. Fraiberg, M., Borovok, I., Weiner, R. M., & Lamed, R. (2010). Journal of Bacteriology, 192, 1066–1074.

    Article  CAS  Google Scholar 

  52. Akaraonye, E., Moreno, C., Knowles, J. C., Keshavarz, T., & Roy, I. (2012). Biotechnology Journal, 7, 293–303.

    Article  CAS  Google Scholar 

  53. Chansatein, O., Urairong, H., & Rodtong, S. (2012). Research Journal of Biological Sciences, 7, 31–37.

    Article  Google Scholar 

  54. Pirnay, J.-P., De Vos, D., Cochez, C., Bilocq, F., Pirson, J., Struelens, M., Duinslaeger, L., Cornelis, P., Zizi, M., & Vanderkelen, A. (2003). Journal of Clinical Microbiology, 41, 1192–1202.

    Article  CAS  Google Scholar 

  55. Deshpande, L. M., & Chopade, B. A. (1994). Biometals, 7, 49–56.

    Article  CAS  Google Scholar 

  56. Liau, S. Y., Read, D. C., Pugh, W. J., Furr, J. R., & Russell, A. D. (1997). Letters in Applied Microbiology, 25, 279–283.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF-2012R1A1A2006375 and NRF-2013R1A2A2A01067117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salunke, B.K., Sawant, S.S. & Kim, B.S. Potential of Kalopanax septemlobus Leaf Extract in Synthesis of Silver Nanoparticles for Selective Inhibition of Specific Bacterial Strain in Mixed Culture. Appl Biochem Biotechnol 174, 587–601 (2014). https://doi.org/10.1007/s12010-014-1077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1077-x

Keywords

Navigation