Skip to main content

Advertisement

Log in

Bioremediation of Hydrocarbons Contaminating Sewage Effluent Using Man-made Biofilms: Effects of Some Variables

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilm samples were established on glass slides by submerging them in oil-free and oil-containing sewage effluent for a month. In batch cultures, such biofilms were effective in removing crude oil, pure n-hexadecane, and pure phenanthrene contaminating sewage effluent. The amounts of the removed hydrocarbons increased with increasing biofilm surface area exposed to the effluent. On the other hand, addition of the reducing agent thioglycollate dramatically inhibited the hydrocarbon bioremediation potential of the biofilms. The same biofilm samples removed contaminating hydrocarbons effectively in three successive batch bioremediation cycles but started to become less effective in the cycles thereafter, apparently due to mechanical biofilm loss during successive transfers. As major hydrocarbonoclastic bacteria, the biofilms harbored species belonging to the genera Pseudomonas, Microvirga, Zavarzinia, Mycobacterium, Microbacterium, Stenotrophomonas, Gordonia, Bosea, Sphingobium, Brachybacterium, and others. The nitrogen fixer Azospirillum brasilense and the microalga Ochromonas distigma were also present; they seemed to enrich the biofilms, with nitrogenous compounds and molecular oxygen, respectively, which are known to enhance microbiological hydrocarbon degradation. It was concluded that man-made biofilms based upon sewage microflora are promising tools for bioremediation of hydrocarbons contaminating sewage effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Nature Reviews Microbiology, 2, 95–108.

    Article  CAS  Google Scholar 

  2. Vymazal, J., Sladedek, V., & Stach, J. (2001). Water Science Technology, 44, 211–214.

    CAS  Google Scholar 

  3. Schumacher, G., Blume, T., & Sekoulov, I. (2003). Water Science and Technology, 47, 195–202.

    CAS  Google Scholar 

  4. Tribelli, P. M., Di Martino, C., Lopez, N. I., & Raiger-Lustman, L. J. (2012). Biodegradation, 5, 645–651.

  5. Radwan, S. S., & Al-Hasan, R. H. (2001). Aquatic Microbial Ecology, 23, 113–117.

    Article  Google Scholar 

  6. Al-Awadhi, H., Al-Hasan, R. H., Sorkhoh, N. A., Salamah, S., & Radwan, S. S. (2003). International Biodeterioration and Biodegradation, 51, 181–185.

    Article  CAS  Google Scholar 

  7. Al-Bader, D., Kansour, M., Rayan, R., & Radwan, S. S. (2012). Environmental Science and Pollution Research, 20, 3252–3262.

    Article  Google Scholar 

  8. Santegoeds, C. M., Ferdelman, T. G., Muyzer, G., & Beer, D. (1998). Applied and Environmental. Microbiology, 64, 3731–3739.

    CAS  Google Scholar 

  9. Sorkhoh, N. A., Ghannoum, M. A., Ibrahim, A. S., Stretton, R. J., & Radwan, S. S. (1990). Environmental Pollution, 65, 1e17.

    Article  Google Scholar 

  10. Al-Awadhi, H., Al-Mailem, D., Dashti, N., Khanafer, M., & Radwan, S. S. (2012). Archives of Microbiology, 194, 689–705.

    Article  CAS  Google Scholar 

  11. Klug, J., & Markovetz, J. (1971). Advances in Microbial Physiology, 5, 1–39.

    Article  CAS  Google Scholar 

  12. Leahy, J. G., & Colwell, R. R. (1990). Microbiology Reviews, 54(3), 305–315.

    CAS  Google Scholar 

  13. Ratledge, C. (1978). Degradation of aliphatic hydrocarbons. In I. Watkinson (Ed.), Developments in biodegradation of hydrocarbons (Vol. 1, pp. 1–45). Essex: Applied Science.

    Google Scholar 

  14. Rhem, H. J., & Reiff, J. (1981). Advances in Biochemical Engineering, 19, 175–215.

    Article  Google Scholar 

  15. Radwan, S. S., & Sorkhoh, N. A. (1993). Advances in Applied Microbiology, 39, 29e90.

    Google Scholar 

  16. Costerton, J. W., Cheng, K. J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., & Marrie, T. J. (1987). Annual Review of Microbiology, 41, 435–464.

    Article  CAS  Google Scholar 

  17. Christensen, B. B., Sternberg, C., Andersen, J. B., & Molin, S. (1998). Applied and Environmental Microbiology, 106, 25–28.

    Google Scholar 

  18. De Souza, M. L., Newcombe, D., Alvey, S., Crowley, D. E., Hay, A., Sadowsky, M. J., & Wackett, L. P. (1998). Applied and Environmental Microbiology, 64, 178–184.

    Google Scholar 

  19. Nielsen, A. T., Tolker-Nielsen, T., Barken, K. B., & Molin, S. (2000). Environmental. Microbiology, 2, 59–68.

    CAS  Google Scholar 

  20. Tolker-Nielsen, T., & Molin, S. (2000). Microbial Ecology, 40, 75–84.

    Google Scholar 

  21. Andrews, J. S., Mason, V. P., Thompson, I. P., Stephen, G. M., & Markx, G. H. (2006). Journal of Microbiological Methods, 64, 96–106.

    Article  CAS  Google Scholar 

  22. Al-Awadhi, H., Dashti, N., Khanafer, M., Al-Mailem, D., Ali, N., & Radwa, S. S. (2013). SpringerPlus, 2, 369–379.

    Article  Google Scholar 

  23. Polz, M. F., & Cavanaugh, C. M. (1998). Applied and Environmental Microbiology, 64, 3724–3730.

    CAS  Google Scholar 

  24. Sipos, R., Szekely, A. J., Palatinsky, M., Revesz, S., Marialigeti, K., & Nicolausz, M. (2007). FEMS Microbiology Ecology, 60, 341–350.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Kuwait University, Research Grant YS 03/12. We would acknowledge the use of ABI 3130xl Genetic Analyzer and the GLC equipment under the General Facility Projects GS01/02 and GS02/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Radwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mailem, D.M., Kansour, M.K. & Radwan, S.S. Bioremediation of Hydrocarbons Contaminating Sewage Effluent Using Man-made Biofilms: Effects of Some Variables. Appl Biochem Biotechnol 174, 1736–1751 (2014). https://doi.org/10.1007/s12010-014-1067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1067-z

Keywords

Navigation