Skip to main content
Log in

Protein Engineering of Bacillus thermocatenulatus Lipase via Deletion of the α5 Helix

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lipases from Bacillus thermocatenulatus are a member of superfamily of α/β hydrolase, but there are structural differences between them. In this work, we focused on the α5 helix of B. thermocatenulatus lipase (BTL2) which is absent in canonical α/β hydrolase fold. In silico study showed that the α5 helix is a region that causes disorder in BTL2 protein. So, the α5 helix (residues 131 to 150) has been deleted from the B. thermocatenulatus lipase gene (BTL2) and the remain (Δα5-BTL2) has been expressed in Pichia pastoris yeast. The α5 deletion results in increase of enzyme-specific activity in the presence of tributyrin, tricaproin, tricaprylin, tricaprin, trilaurin, and olive oil (C18) substrates by 1.4-, 1.7-, 2.0-, 1.2-, 1.75-, and 1.95-fold, respectively. Also, deletion leads to increase in enzyme activity in different temperatures and pHs, whereas it did not significantly affect on enzyme activity in the presence of organic solvents, metal ions, and detergents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BMMH:

Buffered minimal medium containing histidine

YPG:

Yeast extract peptone dextrose medium

References

  1. Khare, S. K., Nabetani, H., & Nakajima, M. (2000). Lipase catalyzed interesterification reaction and their industrial applications. Indian Food Industry, 19, 29–35.

    Google Scholar 

  2. Carriere, F., Thirstrup, K., Hjorth, S., & Boel, E. (1994). Cloning of the classical guinea pig pancreatic lipase and comparison with the lipase related protein. FEBS Letters, 338, 63–68.

    Article  CAS  Google Scholar 

  3. Kademi, A., Danielle, L., Again, H. (2005). Lipases. In: Enzyme technology (pp. 297–318). New Delhi, India: Asiatech.

  4. Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization and application of lipases. Biotechnology Advances, 19, 627–662.

    Article  CAS  Google Scholar 

  5. Hasan, F., Ali Shah, A., & Hameed, A. (2006). Industrial application of microbial lipases. Enzyme and Microbial Technology, 39, 235–251.

    Article  CAS  Google Scholar 

  6. Salis, A., Meloni, M., Ligas, S., Casula, M. F., Monduzzi, M., Solinas, V., & Dumitriu, E. (2005). Physical and chemical adsorption of Mucor javanicus lipase on SBA-15 mesoporous silica. Synthesis, structural characterization, and activity performance. Langmuir, 21(12), 5511–5516.

    Article  CAS  Google Scholar 

  7. Nazina, T. N., Tourova, T. P., Poltaraus, A. B., Novikova, E. V., Grigoryan, A. A., Ivanova, A. E., Lysenko, A. M., Petrunyaka, V. V., Osipov, G. A., Belyaev, S. S., & Ivanov, M. V. (2001). Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations. International Journal of Systematic and Evolutionary Microbiology, 51, 433–446.

    CAS  Google Scholar 

  8. Tyndall, J., Sinchaikul, S., Fothergill-Gilmore, L., Taylor, P., & Walkinshaw, M. (2002). Crystal structure of thermostable lipase from Bacillus stearothermophilus P1. Journal of Molecular Biology, 323, 859–869.

    Article  CAS  Google Scholar 

  9. Carrasco-Lopez, C., Godoy, C., Rivas, B., Lorente, G., Palomo, J., Guisan, J., Lafuente, R., Ripoll, M., & Hermosa, J. (2009). Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements. Journal of Biological Chemistry, 284, 4365–4372.

    Article  CAS  Google Scholar 

  10. Nardini, M., & Dijkstra, B. W. (1999). α/β hydrolase fold enzymes: the family keeps growing. Current Opinion in Structural Biology, 9, 732–737.

    Article  CAS  Google Scholar 

  11. Joseph, B., Ramteke, P. W., & Thomas, G. (2008). Cold active microbial lipases: some hot issues and recent developments. Biotechnology Advances, 26(5), 457–470.

    Article  CAS  Google Scholar 

  12. Jaeger, K. E., Ransac, S., Dijkstra, B. W., Colson, C., Heuvel, M. V., & Misset, O. (1994). Bacterial lipases. FEMS Microbiology Reviews, 15, 29–63.

    Article  CAS  Google Scholar 

  13. Pouderoyen, G. V., Eggert, T., Jaeger, K., & Dijkstra, B. W. (2001). The crystal structure of Bacillus subtilis lipase: a minimal α/β hydrolase fold enzyme. Journal of Molecular Biology, 309, 215–226.

    Article  Google Scholar 

  14. Angkawidjaja, C., & Kanaya, S. (2006). Family I.3 lipase: bacterial lipases secreted by the type I secretion system. Cellular and Molecular Life Sciences, 63, 2804–2817.

    Article  CAS  Google Scholar 

  15. Laskowski, R. A., Macarthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.

    Article  CAS  Google Scholar 

  16. Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sciences, 2, 1511–1519.

    Article  CAS  Google Scholar 

  17. Benkert, P., Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: a comprehensive scoring function for model quality assessment. Proteins: Structure, Function, and Bioinformatics, 71, 261–277.

    Article  CAS  Google Scholar 

  18. Wiederstein, M., & Sippl, M. J. (2007). Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410.

    Article  Google Scholar 

  19. Humphrey, W., Dalke, A., & Sculten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.

    Article  CAS  Google Scholar 

  20. Karkhane, A. A., Yakhchali, B., Rastgar Jazii, F., & Bambai, B. (2009). The effect of substitution of Phe181 and Phe 182 with Ala on activity, substrate specificity and stabilization of substrate at the active site of Bacillus thermocatenulatus lipase. Journal of Molecular Catalysis B: Enzymatic, 61, 162–167.

    Article  CAS  Google Scholar 

  21. Eswar, N., Marti-Renom, M. A., Webb, B., Madhusudhan, M., Eramian, D., Shen, M., Pieper, U., Sali, A. (2006). Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics. John Wiley & Sons, Inc.

  22. Hosseini, M., Karkhane, A. A., Yakhchali, B., Shamsara, M., Aminzadeh, S., Morshedi, D., Haghbeen, K., Torktaz, I., Karimi, E., & Safari, Z. (2012). In silico and experimental characterization of chimeric Bacillus thermocatenulatus lipase with the complete conserved pentapeptide of Candida rugosa lipase. Applied Biochemistry and Biotechnology, 169, 773–785.

    Article  Google Scholar 

  23. Warrens, A. N., Jones, M. D., & Lechler, R. I. (1997). Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for generation of hybrid proteins of immunological interest. Gene, 186, 29–35.

    Article  CAS  Google Scholar 

  24. Karkhane, A. A., Yakhchali, B., Rastgar Jazii, F., Hemmat, J., Shariati, P., Khodabandeh, M., & Zomorodipoor, A. (2012). Periplasmic expression of Bacillus thermocatenulatus lipase in Escherichia coli in presence of different signal sequences. Iranian Journal of Biotechnology, 10, 255–262.

    CAS  Google Scholar 

  25. Quyen, D. T., Schmidt-Dannert, C., & Schmid, R. D. (2003). High-level expression of a lipase from Bacillus thermocatenulatus BTL2 in Pichia pastoris and some properties of the recombinant lipase. Protein Expression and Purification, 28, 102–110.

    Article  CAS  Google Scholar 

  26. Laemmli, U. K. (1971). Nature, 227, 680.

    Article  Google Scholar 

  27. Rastgar Jazii, F., Karkhane, A. A., Yakhchali, B., Fatemi, S. A., & Deezagi, A. A. (2007). Simplified purification procedure for recombinant human granulocyte macrophage colony stimulating factor from periplasmic space of Escherichia coli. Journal of Chromatography, 856, 214–221.

    CAS  Google Scholar 

  28. Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 10, 1093.

    Google Scholar 

  29. Abdul Rahman, M. Z., Salleh, A. B., Noor Zaliha, R., Abdul Rahman, R., Abdul Rahman, M. B., Basri, B., & Chor, L. (2012). Unlocking the mystery behind the activation phenomenon of T1 lipase: a molecular dynamics simulations approach. Protein Sciences, 21, 1210–1221.

    Article  CAS  Google Scholar 

  30. Wahab, R., Basri, M., Rahman, M., Rahman, R., Salleh, A., & Chor, L. (2012). Engineering catalytic efficiency of thermophilic lipase from Geobacillus zalihae by hydrophobic residue mutation near the catalytic pocket. Advances in Bioscience and Biotechnology, 3, 158–167.

    Article  Google Scholar 

  31. Ghori, M. I., Iqbal, M. J., & Hameed, A. (2011). Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes. Brazilian Journal of Microbiology, 42, 22–29.

    Article  CAS  Google Scholar 

  32. Karimi, E., Karkhane, A. A., Yakhchali, B., Shamsara, M., Aminzadeh, S., Torktaz, I., Hosseini, M., & Safari, Z. (2014). Study of the effect of F17A mutation on characteristics of Bacillus thermocatenulatus lipase expressed in Pichia pastoris using in silico and experimental methods. Biotechnology and Applied Biochemistry, 61, 264.

    CAS  Google Scholar 

  33. Novototskaya-Vlasova, K. A., Petrovskaya, L. E., Rivkina, E. M., Dolgikh, D. A., & Kirpichnikov, M. P. (2013). Characterization of a cold-active lipase from Psychrobacter cryohalolentis K5T and its deletion mutants. Biochemistry (Moscow), 78(4), 385–394.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our appreciation and thanks to Mrs. F. Rahimi and Dr. P. Farrokh for their help on the accomplishment of this study. We are also grateful to Mr. H. Jamali for the language editing of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Asghar Karkhane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodarzi, N., Karkhane, A.A., Mirlohi, A. et al. Protein Engineering of Bacillus thermocatenulatus Lipase via Deletion of the α5 Helix. Appl Biochem Biotechnol 174, 339–351 (2014). https://doi.org/10.1007/s12010-014-1063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1063-3

Keywords

Navigation