Skip to main content
Log in

Purification and Biochemical Properties of Multiple Xylanases from Aspergillus ochraceus Tolerant to Hg2+ Ion and a Wide Range of pH

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Production of multiple xylanases, in which each enzyme has a specific characteristic, can be one strategy to achieve the effective hydrolysis of xylan. Three xylanases (xyl 1, xyl 2, and xyl 3) from Aspergillus ochraceus were purified by chromatography using diethylaminoethyl (DEAE) cellulose, Biogel P-60, and Sephadex G-100 columns. These enzymes are glycoproteins of low molecular weight with an optimum temperature at 60 °C. The glycosylation presented is apparently not related to thermostability, since xyl 3 (20 % carbohydrate) was more thermostable than xyl 2 (67 % carbohydrate). Xyl 3 was able to retain most of its activity in a wide range of pH (3.5–8.0), while xyl 1 and xyl 2 presented optimum pH of 6.0. Xyl 1 and xyl 2 were activated by 5 and 10 mM MnCl2 and CoCl2, while xyl 3 was activated by 1 mM of the same compounds. Interestingly, xyl 2 presented high tolerance toward mercury ion. Xylanases from A. ochraceus hydrolyzed xylans of different origins, such as birchwood, oat spelt, larchwood, and eucalyptus (around 90 % or more), except xyl 2 and xyl 3 that hydrolyzed with lesser efficiency eucalyptus (66.7 %) and oat spelt (44.8 %) xylans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andreaus, J., Ferreira-Filho, E. X., & Bon, E. P. S. (2008). In C. T. Hou & J. F. Shaw (Eds.), Biocatalysis and bioenergy: biotechnology of holocellulose degrading enzymes (pp. 197–229). New York: Wiley.

    Google Scholar 

  2. Teixeira, R. S. S., Siqueira, F. G., Souza, M. V., Ferreira-Filho, E. X., & Bon, E. P. S. (2010). Purification and characterization studies of a thermostable β-xylanase from Aspergillus awamori. Journal of Industrial Microbiology and Biotechnology, 37, 1041–1051.

    Article  CAS  Google Scholar 

  3. Bajpai, P. (1997). Microbial xylanolytic enzyme system: properties and application. Advances in Applied Microbiology, 43, 141–194.

    Article  CAS  Google Scholar 

  4. Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Xylanases from fungi: properties and industrial application. Applied Microbiology and Biotechnology, 67, 577–591.

    Article  CAS  Google Scholar 

  5. Amita, R. S., Shah, R. K., & Madamwar, D. (2006). Improvement of the quality of whole wheat bread by supplementation of xylanase from Aspergillus foetidus. Bioresource Technology, 97, 2047–2053.

    Article  Google Scholar 

  6. Lu, F., Lu, M., Lu, Z., Xiaomei, B., Haizhen, Z., & Yi, W. (2008). Purification and characterization of xylanase from Aspergillus ficuum AF-98. Bioresource Technology, 99, 5938–5941.

    Article  CAS  Google Scholar 

  7. Nunez, L. Z., Rodriguez, R., & Baez, M. A. (2001). Gas retention mechanism in wheat bread doughts. The role of xylanase and arabinoxylan fractions. Journal of Biochemistry, 56, 31–33.

    Google Scholar 

  8. Maheswari, M. U., & Chandra, T. S. (2000). Production and potential application of a xylanase from a new strain of Streptomyces cuspidosporus. World Journal of Microbiology and Biotechnology, 16, 257–263.

    Article  CAS  Google Scholar 

  9. Tan, S. S., Li, D. Y., Jiang, Z. Q., Zhu, Y. P., Shi, B., & Li, L. T. (2008). Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima xylanase B (xyn B) immobilized on nickel-chelated Eupergit C. Bioresource Technology, 99(1), 200–204.

    Article  CAS  Google Scholar 

  10. Bajpai, P. (1999). Application of enzymes in pulp and paper industry. Biotechnology Progress, 15, 147–157.

    Article  CAS  Google Scholar 

  11. Collins, T., Gerday, C., & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Review, 29(1), 3–23.

    Article  CAS  Google Scholar 

  12. Wakiyama, M., Yoshihara, K., Hayashi, S., & Ohta, K. (2010). An extracellular endo-1,4-β-xylanase from Aspergillus japonicus: Purification, properties, and characterization of the encoding gene. Journal of Bioscience and Bioengineering, 109(3), 227–229.

    Article  CAS  Google Scholar 

  13. Rizzatti, A. C. S., Jorge, J. A., Terenzi, H. F., Rechia, C. G. V., & Polizeli, M. L. T. M. (2001). Purification and properties of a thermostable extracellular β-D-xylosidase produced by a thermotolerant Aspergillus phoenicis. Journal of Industrial Microbiology and Biotechnology, 26, 156–160.

    Article  CAS  Google Scholar 

  14. Wiseman, A. (1975). Handbook of enzyme biotechnology (p. 148). London: Ellis Horwood.

    Google Scholar 

  15. Miller, G. H. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–429.

    Article  CAS  Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 267–275.

    Google Scholar 

  17. Reisfeld, R. A., Lewis, U. J., & Williams, D. E. (1962). Disk electrophoresis of basic proteins and peptides on polycrylamide gels. Nature, 195, 281–283.

    Article  CAS  Google Scholar 

  18. Davis, B. J. (1964). Disc eletroforesis II. Methods and application to human serum proteins. Annals of the New York Academy of Sciences, 121, 404–427.

    Article  CAS  Google Scholar 

  19. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  20. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  21. Lineweaver, H., & Burk, D. (1934). The determination of the enzyme dissociation. Journal of the American Chemical Society, 56, 658–666.

    Article  CAS  Google Scholar 

  22. Fontana, J. D., Gebara, M., Blumel, M., Schneider, H., Mackenzie, C. R., & Johnson, K. G. (1988). α-4-O-methyl-D-glucuronidase component of xylanolytic complexes. Methods in Enzymology, 160, 560–571.

    Article  CAS  Google Scholar 

  23. Michelin, M., Peixoto-Nogueira, S. C., Silva, T. M., Jorge, J. A., Terenzi, H. F., Teixeira, J. A., & Polizeli, M. L. T. M. (2012). A novel xylan degrading β-D-xylosidase: purification and biochemical characterization. World Journal of Microbiology and Biotechnology, 28(11), 3179–3186.

    Article  CAS  Google Scholar 

  24. Sunna, A., & Antranikian, G. (1997). Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology, 17(1), 39–67.

    Article  CAS  Google Scholar 

  25. Biely, P., Vrsanská, M., Tenkanen, M., & Kluepfel, D. (1997). Endo-β-1,4-xylanase families: differences in catalytic properties. Journal of Biotechnology, 57, 151–166.

    Article  CAS  Google Scholar 

  26. Sandrim, V. C., Rizzatti, A. C. S., Terenzi, H. F., Jorge, J. A., Milagres, A. M. F., & Polizeli, M. L. T. M. (2005). Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochemistry, 40, 1823–1828.

    Article  CAS  Google Scholar 

  27. Nair, S. G., Sindhu, R., & Shashidhar, S. (2008). Purification and biochemical characterization of two xylanases from Aspergillus sydowii SBS 45. Applied Biochemistry and Biotechnology, 149, 229–243.

    Article  CAS  Google Scholar 

  28. Fang, H.-Y., Chang, S.-M., Lan, C.-H., & Fang, T. J. (2008). Purification and characterization of a xylanase from Aspergillus carneus M34 and its potential use in photoprotectant preparation. Process Biochemistry, 43, 49–55.

    Article  CAS  Google Scholar 

  29. Carmona, E. C., Fialho, M. B., Buchgnani, E. B., Coelho, G. D., Brocheto-Braga, M. R., & Jorge, J. A. (2005). Production, purification and characterization of a minor form of xylanase from Aspergillus versicolor. Process Biochemistry, 40, 359–364.

    Article  CAS  Google Scholar 

  30. Pal, A., & Khanum, F. (2011). Purification of xylanase from Aspergillus niger DFR-5: Individual and interactive effect of temperature and pH on its stability. Process Biochemistry, 46, 879–887.

    Article  CAS  Google Scholar 

  31. Kulkarni, N., Shendye, A., & Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Review, 23(4), 411–456.

    Article  CAS  Google Scholar 

  32. Wong, K. K. Y., Tan, L. U., & Saddler, J. N. (1988). Multiplicity of β-1,4 xylanase in microorganisms functions and applications. Microbiological Reviews, 52, 305–317.

    CAS  Google Scholar 

  33. Merivuori, H., Sands, J. A., & Montenecourt, B. S. (1985). Effects of tunicamycin on secretion and enzymatic activities of cellulase from Trichoderma reesei. Applied Microbiology and Biotechnology, 23, 60–66.

    Article  CAS  Google Scholar 

  34. Maheshwari, R., Bharadwaj, G., & Bhat, M. K. (2000). Thermophilic fungi: their physiology and enzymes. Microbiology and Molecular Biology Reviews, 64(3), 461–488.

    Article  CAS  Google Scholar 

  35. Gomes, E., Guez, M. A. U., Martin, N., & Silva, R. (2007). Enzimas termoestáveis: fontes, produção e aplicação industrial. Quimica Nova, 30(1), 136–145.

    Article  CAS  Google Scholar 

  36. Fonseca-Maldonado, R., Vieira, D. S., Alponti, J. S., Bonneil, E., Thibault, P., & Ward, R. J. (2013). Engineering the pattern of protein glycosylation modulates the themostability of a GH11 xylanase. Journal of Biological Chemistry, 288, 25522–25534.

    Article  CAS  Google Scholar 

  37. Bastawde, K. B. (1992). Xylan structure, microbial xylanases, and their mode of action. World Journal of Microbiology and Biotechnology, 8(4), 353–368.

    Article  CAS  Google Scholar 

  38. Hmida-Sayari, A., Taktek, S., Elgharbi, F., & Bejar, S. (2012). Biochemical characterization, cloning and molecular modeling of a detergent and organic solvent-stable family 11 xylanase from the newly isolated Aspergillus niger US368 strain. Process Biochemistry, 47, 1839–1847.

    Article  CAS  Google Scholar 

  39. Bataillon, M., Nunes Cardinali, A. P., Castillon, N., & Duchiron, F. (2000). Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzyme and Microbial Technology, 26, 187–192.

    Article  CAS  Google Scholar 

  40. Heck, J. X., Soares, L. H. B., Hertz, P. F., & Ayub, M. A. Z. (2006). Purification and properties of a xylanase produced by Bacillus circulans BL53 on solid-state cultivation. Biochemical Engineering Journal, 32, 179–184.

    Article  CAS  Google Scholar 

  41. Raj, K. C., & Chandra, T. S. (1996). Purification and characterization of xylanase from alkali-tolerant Aspergillus fischeri Fxn1. FEMS Microbiology Letters, 145, 457–461.

    Article  CAS  Google Scholar 

  42. Mamo, G., Hatti-Kaul, R., & Mattiasson, B. (2006). A thermostable alkaline active endo-β-1-4-xylanase from Bacillus halodurans S7: purification and characterization. Enzyme and Microbial Technology, 39, 1492–1498.

    Article  CAS  Google Scholar 

  43. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  44. Li, K., Azadi, P., Collins, R., Tolan, J., Kim, J. S., & Eriksson, K.-E. L. (2000). Relationships between activities of xylanases and xylan structures. Enzyme and Microbial Technology, 27, 89–94.

    Article  Google Scholar 

  45. Vásquez, M. J., Alonso, J. L., Domínguez, H., & Parajó, J. C. (2002). Enzymatic processing of crude xylooligomer solutions obtained by autohydrolysis of eucalyptus wood. Food Biotechnology, 16, 91–105.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho de Desenvolvimento Científico e Tecnológico (CNPq), and National System for Research on Biodiversity (Sisbiota-Brazil, CNPq 563260/2010-6/FAPESP no. 2010/52322-3). J.A.J. and M.L.T.M.P are research fellows of CNPq. M.M. was a recipient of a FAPESP fellowship (Process 05/55463-9), and this work is part of her doctoral thesis. We thank Ricardo Alarcon, Mariana Cereia, and Maurício de Oliveira for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Lourdes T. M. Polizeli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michelin, M., Silva, T.M., Jorge, J.A. et al. Purification and Biochemical Properties of Multiple Xylanases from Aspergillus ochraceus Tolerant to Hg2+ Ion and a Wide Range of pH. Appl Biochem Biotechnol 174, 206–220 (2014). https://doi.org/10.1007/s12010-014-1051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1051-7

Keywords

Navigation