Skip to main content
Log in

Regulation of vincamine biosynthesis and associated growth promoting effects through abiotic elicitation, cyclooxygenase inhibition, and precursor feeding of bioreactor grown Vinca minor hairy roots

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hydroxylase/acetyltransferase elicitors and cyclooxygenase inhibitor along with various precursors from primary shikimate and secoiridoid pools have been fortified to vincamine less hairy root clone of Vinca minor to determine the regulatory factors associated with vincamine biosynthesis. Growth kinetic studies revealed that acetyltransferase elicitor acetic anhydride and terpenoid precursor loganin significantly reduce the growth either supplemented alone or in combination (GI = 140.6 ± 18.5 to 246.7 ± 24.3), while shikimate and tryptophan trigger biomass accumulation (GI = 440.2 ± 31.5 to 540.5 ± 40.3). Loganin also downregulates total alkaloid biosynthesis. Maximum flux towards vincamine production (0.017 ± 0.001 % dry wt.) was obtained when 20-day-old hairy roots were fortified with secologanin (10 mg/l) along with tryptophan (100 mg/l), naproxen (8.4 mg/l), hydrogen peroxide (20 μg/l), and acetic anhydride (32.4 mg/l). This was supported by RT PCR (qPCR) analysis where 2- and 3-fold increase in tryptophan decarboxylase (TDC; RQ = 2.0 ± 0.09) and strictosidine synthase (STR; RQ = 3.3 ± 0.36) activity, respectively, was recorded. The analysis of variance (ANOVA) for growth kinetics, total alkaloid content, and gene expression studies favored highly significant data (P < 0.05–0.01). Above treated hairy roots were also up-scaled in a 5-l stirred-tank bioreactor where a 40-day cycle yielded 8-fold increase in fresh root mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Bruneton, J. (1995). Pharmacognosy, Phytochemistry, Medicinal Plants (p. 915). Paris: Lavoisier Publ.

    Google Scholar 

  2. Verma, P., Mathur, A. K., & Shankar, K. (2012). Plant Cell, Tissue and Organ Culture, 111, 239–245.

    Article  CAS  Google Scholar 

  3. Belal, T. S., Barary, M. H., Ibrahim, M. E. A. L., & Sabry, S. M. (2009). Journal of Food and Drug Analysis, 17, 415–423.

    CAS  Google Scholar 

  4. Molchan, O., Romashko, S., & Yurin, V. (2012). Plant Cell, Tissue and Organ Culture, 108, 535–539.

    Article  CAS  Google Scholar 

  5. Sabry, S. M., Belal, T. S., Barary, M. H., & Ibrahim, M. E. A. L. (2010). Journal of Food and Drug Analysis, 18, 447–457.

    CAS  Google Scholar 

  6. Kutchan, T. M. (1995). Plant Cell, 7, 1059–1070.

    CAS  Google Scholar 

  7. Morgan, J. A., & Shanks, J. V. (2000). Journal of Biotechnology, 79, 137–145.

    Article  CAS  Google Scholar 

  8. Verpoorte, R., & Alfermann, A. W. (2000). Metabolic Engineering of Plant Secondary Metabolism. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Book  Google Scholar 

  9. Sato, F., Hashimoto, T., Hachiya, A., Tamura, K. I., Choi, K. B., & Murashige, T. (2001). Proceedings of the National Academy of Sciences of the United States of America, 98, 367–372.

    Article  CAS  Google Scholar 

  10. Facchini, P. J., & De Luca, V. (2008). Plant Journal, 54, 763–84.

    Article  CAS  Google Scholar 

  11. Ziegler, J., & Facchini, P. J. (2008). Annual Review of Plant Biology, 59, 735–769.

    Article  CAS  Google Scholar 

  12. Geerlings, A., Martinez-Lozano Ibanez, M., Memelink, J., van der Heijden, R., & Verpoorte, R. (1999). Journal of Biological Chemistry, 275, 3051–3056.

    Article  Google Scholar 

  13. Guo, Z.-G., Liu, Y., & Xing, X.-H. (2011). Process Biochemistry, 46, 783–787.

    Article  CAS  Google Scholar 

  14. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  15. Hooykaas, P. J. J., Klapwijk, P. M., Nuti, M. P., Schilperoort, R. A., & Rorsch, A. (1977). Journal of General Microbiology, 98, 477–482.

    Article  Google Scholar 

  16. Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Experimental Cell Research, 50, 151–158.

    Article  CAS  Google Scholar 

  17. Giddings, L.-A., Liscombe, D. K., Hamilton, J. P., Childs, K. L., Della Penna, D., Buell, C. R., & O’Conner, S. E. (2011). Journal of Biological Chemistry, 286, 16751–16757.

    Article  CAS  Google Scholar 

  18. Guo, Z.-G., Liu, Y., Gong, M.-Z., Chen, W., & Li, W.-Y. (2013). Plant Cell, Tissue and Organ Culture, 112, 43–54.

    Article  CAS  Google Scholar 

  19. Bulgakov, V. P. (2008). Biotechnology Advances, 26, 318–324.

    Article  CAS  Google Scholar 

  20. Christey, M. C. (2001). In Vitro Cellular & Developmental Biology. Plant, 37, 687–700.

    Article  CAS  Google Scholar 

  21. Wang, Y., Dai, C. C., & Zhao, Y. W. (2011). Process Biochemistry, 46, 730–735.

    Article  Google Scholar 

  22. Goddijn, O. J. M., Pennings, E. J. M., Van der Helm, P., Schilperoort, R. A., et al. (1995). Transgenic Research, 4, 315–323.

    Article  CAS  Google Scholar 

  23. Canel, C., Lopes-Cardoso, M. I., Whitmer, S., Van der Fits, L., et al. (1998). Planta, 205, 414–419.

    Article  CAS  Google Scholar 

  24. Whitmer, S., Canel, C., Hallard, D., Goncalves, C., & Verpoorte, R. (1998). Plant Physiology, 116, 853–857.

    Article  CAS  Google Scholar 

  25. Whitmer, S., Van der Heijden, R., & Verpoorte, R. (2002). Plant Cell, Tissue and Organ Culture, 69, 85–93.

    Article  CAS  Google Scholar 

  26. Whitmer, S., Van der Heijden, R., & Verpoorte, R. (2002). Journal of Biotechnology, 96, 193–203.

    Article  CAS  Google Scholar 

  27. Seth, R., & Mathur, A. K. (2005). Current Science, 89, 554–547.

    Google Scholar 

  28. Verma, P., Mathur, A. K., Massod, N., Luqman, s., & Shankar, K. (2012). Protoplasma, 250, 371–380.

    Article  Google Scholar 

  29. Verma, P., Mathur, A. K., & Shankar, K. (2012). Applied Biochemistry and Biotechnology, 168, 568–579.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work presented here has been supported by DST-FAST TRACK SERC/LS-261/2012. The help rendered by Jyotsana Priya during HPLC analysis has been highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Verma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, P., Khan, S.A., Mathur, A.K. et al. Regulation of vincamine biosynthesis and associated growth promoting effects through abiotic elicitation, cyclooxygenase inhibition, and precursor feeding of bioreactor grown Vinca minor hairy roots. Appl Biochem Biotechnol 173, 663–672 (2014). https://doi.org/10.1007/s12010-014-0883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0883-5

Keywords

Navigation