Skip to main content
Log in

Effects of Streptomyces pactum Act12 on Salvia miltiorrhiza Hairy Root Growth and Tanshinone Synthesis and Its Mechanisms

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The fermentation broth and mycelium pellet of Streptomyces pactum Act12 (Act12) may promote the accumulation of soluble sugar when added to Salvia miltiorrhiza hairy roots, increasing the accumulation level by as much as 23.20 % compared with the control; it may also inhibit the accumulation of soluble protein in the hairy roots, decreasing it by as much as 17.96 % compared with the control. The ACT12 also has a certain promotional effect on the growth of hairy root at an appropriate concentration of elicitors and upregulates the expression of genes 3-hydroxy-3-methyglutary1-CoA reductase (HMGR), 1-deoxy-d-xylulose 5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), and geranylgeranyl diphosphate synthase (GGPPS). Among these effects, that of the HMGR gene expression is as high as 33.66 times that of the control, indicating that the test Streptomyces pactum may efficiently adjust the secondary metabolism of S. miltiorrhiza at the level of gene transcription, thereby greatly increasing the accumulation level of tanshinone in the hairy roots; among which, the cryptotanshinone levels increased most significantly, as much as 33.63 times that of the control, and the total tanshinone levels were 12.61 times that of the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, X. H., Morris-Natschke, S. L., & Lee, K. H. (2007). New developments in the chemistry and biology of the bioactive constituents of Tanshen. Medicinal Research Reviews, 27(1), 133–148.

    Article  Google Scholar 

  2. Zhou, L. (2005). Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. The Journal of Clinical Pharmacology, 45(12), 1345–1359.

    Article  CAS  Google Scholar 

  3. Laule, O., et al. (2003). Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 100(11), 6866–6871.

    Article  CAS  Google Scholar 

  4. Lichtenthaler, H. K. (2000). Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochemical Society Transactions, 28, 785–789.

    Article  CAS  Google Scholar 

  5. Kai, G. Y., et al. (2010). Characterization, expression profiling, and functional identification of a gene encoding geranylgeranyl diphosphate synthase from Salvia miltiorrhiza. Biotechnology and Bioprocess Engineering, 15(2), 236–245.

    Article  CAS  Google Scholar 

  6. Giri, A., et al. (2001). Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnology Advances, 19(3), 175–199.

    Article  CAS  Google Scholar 

  7. Shanks, J. V., & Morgan, J. (1999). Plant ‘hairy root’ culture. Current Opinion in Plant Biology, 10(10), 151–155.

    Article  CAS  Google Scholar 

  8. Flores, H. E., Vivanco, J. M., & Loyola-Vargas, V. M. (1999). ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends in Plant Science, 4(4), 220–226.

    Article  Google Scholar 

  9. Ge, X., & Wu, J. (2005). Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Science, 168(2), 487–491.

    Article  CAS  Google Scholar 

  10. Xiao, Y., et al. (2009). Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiologia Plantarum, 137(1), 1–9.

    Article  CAS  Google Scholar 

  11. Yang, D. F., et al. (2012). PEG and ABA trigger the burst of reactive oxygen species to increase tanshinone production in Salvia miltiorrhiza hairy roots. Journal of Plant Growth Regulation, 31(4), 579–587.

    Article  CAS  Google Scholar 

  12. Wu, J.-Y., et al. (2007). Enhanced secondary metabolite (tanshinone) production of Salvia miltiorrhiza hairy roots in a novel root–bacteria coculture process. Applied Microbiology and Biotechnology, 77(3), 543–550.

    Article  CAS  Google Scholar 

  13. Zhao, J., et al. (2011). Antagonistic effect of multifunctional actinomycete strain Act12 on soil-borne pathogenic fungi and its identification. Chinese Journal of Eco-Agriculture, 19(2), 394–398.

    Article  Google Scholar 

  14. Zhao, J., et al. (2010). The growth-promoting effect and resistance induction of 3 antagonistic actinomyces on Cucumis melo L. Journal of Northwest A & F University (Natural Science Edition), 38(2), 109–116.

    Google Scholar 

  15. Chen, H., et al. (1999). Production of lithospermic acid B and rosmarinic acid in hairy root cultures of Salvia miltiorrhiza. Journal of Industrial Microbiology & Biotechnology, 22(3), 133–138.

    Article  CAS  Google Scholar 

  16. Yan, Q., et al. (2005). Efficient production and recovery of diterpenoid tanshinones in hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. Journal of Biotechnology, 119(4), 416–424.

    Article  CAS  Google Scholar 

  17. Gao, J., et al.(2005). Experiment guidance of plant physiology: Higher Education Press. 140–148.

  18. Liu, H., et al. (2011). Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Industrial Crops and Products, 33(1), 84–88.

    Article  CAS  Google Scholar 

  19. Duan, C.-M., et al. (2010). Effects of antimicrobial actinomyces growth and PPO activity in cucumber. Acta Agriculturae Boreali-Occidentalis Sinica, 19(9), 48–54.

    Google Scholar 

  20. Xu, Y.-j., et al. (2007). Growth promoting effect and induced endurance of three actinomyces strains to Strawberry. Acta Agriculturae Boreali-Occidentalis Sinica., 16(6), 146–153.

    Google Scholar 

  21. Atkinson, M. M., Huang, J. S., & Knopp, J. A. (1985). The hypersensitive reaction of tobacco to pseudomonas syringae pv. pisi: activation of a plasmalemma K/H exchange mechanism. Plant physiology, 79(3), 843–847.

    Article  CAS  Google Scholar 

  22. Atkinson, M. M., et al. (1990). Involvement of plasma membrane calcium influx in bacterial induction of the k/h and hypersensitive responses in tobacco. Plant physiology, 92(1), 215–221.

    Article  CAS  Google Scholar 

  23. Fu, Y., et al. (2011). β-1,3-Glucan with different degree of polymerization induced different defense responses in tobacco. Carbohydrate Polymers, 86(2), 774–782.

    Article  CAS  Google Scholar 

  24. Sharathchandra, R. G., et al. (2006). Isolation and characterisation of a protein elicitor from Sclerospora graminicola and elicitor-mediated induction of defence responses in cultured cells of Pennisetum glaucum. Functional Plant Biology, 33(3), 267–278.

    Article  CAS  Google Scholar 

  25. Wu, J. Y., Zhao, J. L., & Zhou, L. G. (2010). Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by a plant-growth-promoting Rhizobacterium Bacillus cereus. Journal of Biotechnology, 150, S368–S368.

    Google Scholar 

  26. Roos, W., et al. (1998). Shifts of intracellular pH distribution as a part of the signal mechanism leading to the elicitation of benzophenanthymidine alkaloids. Plant Physiology, 118(2), 349–364.

    Article  CAS  Google Scholar 

  27. Sakano, K.(2001). Metabolic regulation of pH in plant cells: role of cytoplasmic pH in defense reaction and secondary metabolism, in International Review of Cytology, W.J. Kwang, Editor. Academic Press. p. 1–44.

  28. Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283–333.

    Article  CAS  Google Scholar 

  29. Liang, Z. S., et al. (2012). Roles of reactive oxygen species in methyl jasmonate and nitric oxide-induced tanshinone production in Salvia miltiorrhiza hairy roots. Plant Cell Reports, 31(5), 873–883.

    Article  CAS  Google Scholar 

  30. Sun, J., et al. (2012). Improved cardenolide production in Calotropis gigantea hairy roots using mechanical wounding and elicitation. Biotechnology Letters, 34(3), 563–569.

    Article  CAS  Google Scholar 

  31. Gangopadhyay, M., Dewanjee, S., & Bhattacharya, S. (2011). Enhanced plumbagin production in elicited Plumbago indica hairy root cultures. Journal of Bioscience and Bioengineering, 111(6), 706–710.

    Article  CAS  Google Scholar 

  32. Kumar, V., et al. (2012). Culture filtrate of root endophytic fungus Piriformospora indica promotes the growth and lignan production of Linum album hairy root cultures. Process Biochemistry, 47(6), 901–907.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongsuo Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Zhang, S., Yang, D. et al. Effects of Streptomyces pactum Act12 on Salvia miltiorrhiza Hairy Root Growth and Tanshinone Synthesis and Its Mechanisms. Appl Biochem Biotechnol 173, 883–893 (2014). https://doi.org/10.1007/s12010-014-0876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0876-4

Keywords

Navigation