Skip to main content
Log in

Alginate/Polyoxyethylene and Alginate/Gelatin Hydrogels: Preparation, Characterization, and Application in Tissue Engineering

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hydrogels are attractive biomaterials for three-dimensional cell culture and tissue engineering applications. The preparation of hydrogels using alginate and gelatin provides cross-linked hydrophilic polymers that can swell but do not dissolve in water. In this work, we first reinforced pure alginate by using polyoxyethylene as a supporting material. In an alginate/PEO sample that contains 20 % polyoxyethylene, we obtained a stable hydrogel for cell culture experiments. We also prepared a stable alginate/gelatin hydrogel by cross-linking a periodate-oxidized alginate with another functional component such as gelatin. The hydrogels were found to have a high fluid uptake. In this work, preparation, characterization, swelling, and surface properties of these scaffold materials were described. Lyophilized scaffolds obtained from hydrogels were used for cell viability experiments, and the results were presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Shoichet, M. S. (2010). Polymer scaffolds for biomaterials applications. Macromolecules, 43(2), 581–591.

    Article  CAS  Google Scholar 

  2. Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57(3), 397–430.

    Article  CAS  Google Scholar 

  3. Rowley, J. A., Madlambayan, G., & Mooney, D. J. (1999). Alginate hydrogels as synthetic extracellular matrix materials. Biomaterals, 20(1), 45–53.

    Article  CAS  Google Scholar 

  4. Atola A, Lanza RP. Methods of tissue engineering. Chapter 56. Bouhadir KH, Mooney DJ. Synthesis of hydrogels: alginate hydrogels 2002;653–62.

  5. Kayaman-Apohan, N., Karal-Yılmaz, O., Baysal, K., & Baysal, B. M. (2001). Poly(DL-lactic acid)/triblock PCL-PDMS-PCL copolymers: synthesis, characterization and demonstration of their cell growth effects in vitro. Polymer, 42(9), 4109–4116.

    Article  CAS  Google Scholar 

  6. Kayaman-Apohan, N., & Baysal, B. M. (2001). Semi-interpenetrating hydrogel networks of poly(2-hydroxy ethyl methacrylate). Macromolecular Chemistry and Physics, 202(7), 1182–1188.

    Article  CAS  Google Scholar 

  7. Porjazoska, A., Yilmaz, O. K., Baysal, K., Cvetkovska, M., Sirvanci, S., Ercan, F., & Baysal, B. M. (2006). Synthesis and characterization of poly(ethylene glycol)-poly(D, L-lactide-co-glycolide)-poly(ethylene glycol) tri-block co-polymers modified with collagen: a model surface suitable for cell interaction. Journal of Biomaterials Science Polymer Edition, 17(3), 323–340.

    Article  CAS  Google Scholar 

  8. Tasdelen, B., Kayaman-Apohan, N., Guven, O., & Baysal, B. M. (2005). Anticancer drug release from poly(N-isopropylamide/itaconic acid) copolymeric hydrogels. Radiation Physics and Chemistry, 73(6), 340–345.

    Article  CAS  Google Scholar 

  9. Karal-Yılmaz, O., Kayaman-Apohan, N., Misirli, Z., Baysal, K., & Baysal, B. M. (2006). Synthesis and characterization of poly(L-lactic acid-co-ethylene oxide-co-aspartic acid) and its interaction with cells. Journals of Materials Science: Materials in Medicine, 17(3), 213–227.

    Google Scholar 

  10. Piscioneri, A., Campana, C., Salerno, S., Morelli, S., Bader, A., Giordano, F., Drioli, E., & Bartolo, L. D. (2011). Biodegradable and synthetic membranes for the expansion and functional differentiation of rat embryonic liver cells. Acta Biomaterialia, 7(1), 171–179.

    Article  CAS  Google Scholar 

  11. Baysal K, Aroguz AZ, Adiguzel Z, Baysal B; Chitosan alginate hydrogels: preparation, characterization and application in tissue engineering. International Journal of Biological Macromolecules, 59(8), 342–348.

  12. Smidsrod, O., Haug, A., & Larsen, B. (1966). Influence of pH on rate of hydrogels of acidic polysaccharides. Acta Chemica Scandinavica, 20(4), 1026–1034.

    Article  CAS  Google Scholar 

  13. Larsen, B., Smidsrod, O., Haug, A., & Painter, T. (1969). Determination by a kinetic method of nearest-neighbour frequencies in a fragment of alginic acid. Acta Chemica Scandinavica, 23(7), 2375–2388.

    Article  CAS  Google Scholar 

  14. Hang, A., Larsen, B., & Smidsrod, O. (1974). Uronic acid sequence in alginate from different sources. Carbohydrate Research, 32(2), 217–225.

    Article  Google Scholar 

  15. Grasdalen, H., Larsen, B., & Smidsrod, O. (1977). 13C NMR studies of alginate. Carbohydrate Research, 56(2), C11–C15.

    Article  CAS  Google Scholar 

  16. Boanini, E., Rubini, K., Panzavolta, S., & Bigi, A. (2010). Chemico-physical characterization of gelatin films modified with oxidized alginate. Acta Biomaterialia, 6(2), 383–388.

    Article  CAS  Google Scholar 

  17. Bouhadir, K. H., Hausman, D. S., & Mooney, D. J. (1999). Synthesis of cross-linked poly (aldehyde guluronate) hydrogels. Polymer, 40(12), 3575–3584.

    Article  CAS  Google Scholar 

  18. Eiselt, P., Lee, K. Y., & Mooney, D. J. (1999). Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)-diamines. Macromolecules, 32(17), 5561–5566.

    Article  CAS  Google Scholar 

  19. Drury, J. L., Dennis, R. G., & Mooney, D. J. (2004). The tensile properties of alginate hydrogels. Biomaterials, 25(16), 3187–3199.

    Article  CAS  Google Scholar 

  20. Bernhardt, A., Despang, F., Lode, A., Demmler, A., Hankeand, T., & Gelinsky, M. J. (2009). Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine hydroxyapatite scaffolds with anisotropic pore structure. Tissue Engineering and Regenerative Medicine, 3(1), 54–62.

    Article  CAS  Google Scholar 

  21. Balakrishnan, B., Mohanty, M., Umashankar, P. R., & Jayakrishnan, A. (2005). Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate gelatine. Biomaterials, 26(32), 6335–6342.

    Article  CAS  Google Scholar 

  22. Ferreira-Almeida, P., & Almeida, A. J. (2004). Cross-linked alginate-gelatine beads: a new matrix for controlled release of pindolol. Journal of Controlled Release, 97(3), 431–439.

    Article  CAS  Google Scholar 

  23. Fan, L., Du, Y., Huang, R., Wang, Q., & Zhang, L. (2005). Preparation and characterization of alginate/gelatin blend fibers. Journal of Applied Polymer Science, 96(5), 1625–1629.

    Article  CAS  Google Scholar 

  24. Borenfreund, E., & Puerner, J. A. (1985). Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicology Letters, 24(2–3), 119–124.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahattin M. Baysal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aroguz, A.Z., Baysal, K., Adiguzel, Z. et al. Alginate/Polyoxyethylene and Alginate/Gelatin Hydrogels: Preparation, Characterization, and Application in Tissue Engineering. Appl Biochem Biotechnol 173, 433–448 (2014). https://doi.org/10.1007/s12010-014-0851-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0851-0

Keywords

Navigation