Skip to main content
Log in

Anaerobic Digestion of Yard Waste with Hydrothermal Pretreatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The digestibility of lignocellulosic biomass is limited by its high content of refractory components. The objective of this study is to investigate hydrothermal pretreatment and its effects on anaerobic digestion of sorted organic waste with submerged fermentation. Hydrothermal pretreatment (HT) was performed prior to anaerobic digestion, and three agents were examined for the HT: hot compressed water, alkaline solution, and acidic solution. The concentrations of glucose and xylose were the highest in the sample pretreated in acidic solution. Compared with that of the untreated sample, the biogas yields from digesting the samples pretreated in alkaline solution, acidic solution, and hot water increased by 364, 107, and 79 %, respectively. The decrease of chemical oxygen demand (COD) in liquid phase followed the same order as for the biogas yield. The initial ammonia content of the treated samples followed the order sample treated in acidic solution > sample treated in alkaline solution > sample treated in hot water. The concentrations of volatile fatty acids (VFAs) were low, indicating that the anaerobic digestion process was running at continuously stable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Deublein, D., & Steinhauser, A. (2008). Biogas from waste and renewable resources: energy supply in the future-scenarios (pp. 7–23). Weinheim: Wiley.

    Book  Google Scholar 

  2. Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Hydrothermal pretreatment of rice straw biomass: a potential and promising method for enhanced methane production. Applied Energy, 94, 129–140.

    Article  CAS  Google Scholar 

  3. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  4. Sreekrishnan, T., Kohli, S., & Rana, V. (2004). Enhancement of biogas production from solid substrates using different techniques––a review. Bioresource Technology, 95, 1–10.

    Article  CAS  Google Scholar 

  5. Kreuger, E., Sipos, B., Zacchi, G., Svensson, S. E., & Bjornsson, L. (2011). Bioconversion of industrial hemp to ethanol and methane: the benefits of steam pretreatment and co-production. Bioresource Technology, 102, 3457–3465.

    Article  CAS  Google Scholar 

  6. Noike, T., Endo, G., Chang, J. E., Yaguchi, J. I., & Matsumoto, J. I. (2004). Characteristics of carbohydrate degradation and the rate‐limiting step in anaerobic digestion. Biotechnology and Bioengineering, 27, 1482–1489.

    Article  Google Scholar 

  7. Lu, S., Imai, T., Ukita, M., & Sekine, M. (2007). Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes. Journal of Environmental Sciences, 19, 416–420.

    Article  CAS  Google Scholar 

  8. He, Y., Pang, Y., Liu, Y., Li, X., & Wang, K. (2008). Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuel, 22, 2775–2781.

    Article  CAS  Google Scholar 

  9. Kumar, S., Kothari, U., Kong, L. Z., Lee, Y. Y., & Gupta, R. B. (2011). Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass and Bioenergy, 35(2), 956–968.

    Article  CAS  Google Scholar 

  10. Xiao, L. P., Shi, Z. J., Xu, F., & Sun, R. C. (2012). Hydrothermal carbonization of lignocellulosic biomass. Bioresource Technology, 118, 619–623.

    Article  CAS  Google Scholar 

  11. Quéméneur, M., Hamelin, J., Barakat, A., Steyer, J. P., Carrère, H., & Trably, E. (2012). Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. International Journal of Hydrogen Energy, 37(4), 3150–3159.

    Article  CAS  Google Scholar 

  12. Barakat, A., Monlau, F., Steyer, J. P., & Carrere, H. (2012). Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresource Technology, 104, 90–99.

    Article  CAS  Google Scholar 

  13. Janzon, R., Schütt, F., Oldenburg, S., Fischer, E., Körner, I., & Saake, B. (2014). Steam pretreatment of spruce forest residues: optimal conditions for biogas production and enzymatic hydrolysis. Carbohydrate Polymers, 100, 202–210.

    Article  CAS  Google Scholar 

  14. APHA. (2005). Standard methods for the examination of water and wastewater. 21st edn. Washington, DC: American Public Health Association.

  15. Zieminski, K., Romanowska, I., & Kowalska, M. (2012). Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Management, 32, 1131–1137.

    Article  CAS  Google Scholar 

  16. Gunnar Jantsch, T., & Mattiasson, B. (2004). An automated spectrophotometric system for monitoring buffer capacity in anaerobic digestion processes. Water Research, 38, 3645–3650.

    Article  CAS  Google Scholar 

  17. Merali, Z., Ho, J. D., Collins, S. R. A., et al. (2013). Characterization of cell wall components of wheat straw following hydrothermal pretreatment and fractionation. Bioresource Technology, 131, 226–234.

    Article  CAS  Google Scholar 

  18. Tekin, K., Karagöz, S., & Bektaş, S. (2013). Hydrothermal conversion of woody biomass with disodium octaborate tetrahydrate and boric acid. Industrial Crops Products, 49, 334–340.

    Article  CAS  Google Scholar 

  19. Tekin, K., & Karagoz, S. (2013). Non-catalytic and catalytic hydrothermal liquefaction of biomass. Research on Chemical Intermediates, 39, 485–498.

    Article  CAS  Google Scholar 

  20. Zhu, J., Wan, C., & Li, Y. (2010). Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Journal of Bioresource Technology, 101, 7523–7528.

    Article  CAS  Google Scholar 

  21. Buyukkamaci, N., & Filibeli, A. (2004). Volatile fatty acid formation in an anaerobic hybrid reactor. Process Biochemistry, 39, 1491–1494.

    Article  CAS  Google Scholar 

  22. Nguyen, P. H. L., Kuruparan, P., & Visvanathan, C. (2007). Anaerobic digestion of municipal solid waste as a treatment prior to landfill. Bioresource Technology, 98, 380–387.

    Article  CAS  Google Scholar 

  23. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10), 4044–4064.

    Article  CAS  Google Scholar 

  24. Hashimoto, A. G. (2004). Pretreatment of wheat straw for fermentation to methane. Biotechnology and Bioengineering, 28, 1857–1866.

    Article  Google Scholar 

  25. Björnsson, L., Murto, M., Jantsch, T. G., & Mattiasson, B. (2001). Evaluation of new methods for the monitoring of alkalinity, dissolved hydrogen and the microbial community in anaerobic digestion. Water Research, 35(12), 2833–2840.

    Article  Google Scholar 

  26. Fezzani, B., & Cheikh, R. B. (2010). Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresource Technology, 101(6), 1628–1634.

    Article  CAS  Google Scholar 

  27. Toor, S. S., & Rudolf, L. (2011). Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy, 36, 2328–2342.

    Article  CAS  Google Scholar 

  28. Yenigün, O., & Demirel, B. (2013). Ammonia inhibition in anaerobic digestion: a review. Process Biochemistry, 48, 901–911.

    Article  CAS  Google Scholar 

  29. Viéitez, E. R., & Ghosh, S. (1999). Biogasification of solid wastes by two-phase anaerobic fermentation. Biomass of Bioenergy, 16(5), 299–309.

    Article  Google Scholar 

  30. Athanasoulia, E., Melidis, P., & Aivasidis, A. (2012). Optimization of biogas production from waste activated sludge through serial digestion. Renewable Energy, 47, 147–151.

    Article  CAS  Google Scholar 

  31. Walker, M., Iyer, K., Heaven, S., & Banks, C. J. (2011). Ammonia removal in anaerobic digestion by biogas stripping: an evaluation of process alternatives using a first order rate model based on experimental findings. Chemical Engineering Journal, 178, 138–145.

    Article  CAS  Google Scholar 

  32. Komemoto, K., Lim, Y. G., Nagao, N., Onoue, Y., Niwa, C., & Toda, T. (2009). Effect of temperature on VFA’s and biogas production in anaerobic solubilization of food waste. Waste Management, 29(12), 2950–2955.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from Hi-Tech Research and Development Program of China (863 Program, 2012AA021401), National Natural Science Foundation of China (21161140329), and National Key Technology R&D Program National Key Technology Support Program (2012BAC03B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwen Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Zhang, G., Zhang, Z. et al. Anaerobic Digestion of Yard Waste with Hydrothermal Pretreatment. Appl Biochem Biotechnol 172, 2670–2681 (2014). https://doi.org/10.1007/s12010-014-0724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0724-6

Keywords

Navigation