Skip to main content
Log in

Nutrient Removal and Biomass Production in an Outdoor Pilot-Scale Phototrophic Biofilm Reactor for Effluent Polishing

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An innovative pilot-scale phototrophic biofilm reactor was evaluated over a 5-month period to determine its capacity to remove nitrogen and phosphorus from Dutch municipal wastewater effluents. The areal biomass production rate ranged between 2.7 and 4.5 g dry weight/m2/day. The areal nitrogen and phosphorus removal rates averaged 0.13 g N/m2/day and 0.023 g P/m2/day, which are low compared to removal rates achieved in laboratory biofilm reactors. Nutrient removal increased during the day, decreased with decreasing light intensity and no removal occurred during the night. Additional carbon dioxide supply was not requisite as the wastewater was comprised of enough inorganic carbon to sustain microalgal growth. The study was not conclusive for the limiting factor that caused the low nutrient removal rate, possibly the process was limited by light and temperature, in combination with pH increases above pH 9 during the daytime. This pilot-scale study demonstrated that the proposed phototrophic biofilm reactor is not a viable post-treatment of municipal wastewater effluents under Dutch climate conditions. However, the reactor performance may be improved when controlling the pH and the temperatures in the morning. With these adaptations, a phototrophic biofilm reactor could be feasible at lower latitudes with higher irradiance levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roeselers, G., Loosdrecht, M., & Muyzer, G. (2008). Journal of Applied Phycology, 20, 227–235.

    Article  CAS  Google Scholar 

  2. Schumacher, G., Blume, T., & Sekoulov, I. (2003). Water Sci Technol, 47, 195–202.

    CAS  Google Scholar 

  3. De Godos, I., González, C., Becares, E., García-Encina, P., & Muñoz, R. (2009). Appl Microbiol Biotechnol, 82, 187–194.

    Article  CAS  Google Scholar 

  4. Shi, J., Podola, B., & Melkonian, M. (2007). Journal of Applied Phycology, 19, 417–423.

    Article  CAS  Google Scholar 

  5. González, C., Marciniak, J., Villaverde, S., León, C., García, P. A., & Munoz, R. (2008). Water Sci Technol, 58, 95–102.

    Article  Google Scholar 

  6. Halterman, S. G., & Toetz, D. W. (1984). Hydrobiologia, 114, 209–214.

    Article  CAS  Google Scholar 

  7. Collos, Y., Vaquer, A., & Souchu, P. (2005). J Phycol, 41, 466–478.

    Article  CAS  Google Scholar 

  8. Eppley, R. W., Rogers, J. N., & McCarthy, J. J. (1969). Limnol Oceanogr, 14, 912–920.

    Article  CAS  Google Scholar 

  9. Hwang, S.-J., Havens, K. E., & Steinman, A. D. (1998). Freshwater Biology, 40, 729–745.

    Article  CAS  Google Scholar 

  10. Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., & Wijffels, R. H. (2011). Water Res, 45, 5925–5933.

    Article  CAS  Google Scholar 

  11. Lacour, T., Sciandra, A., Talec, A., & Mayzaud, P. (2012). J Phycol, 48, 966–975.

    Article  Google Scholar 

  12. Needoba, J. A., & Harrison, P. J. (2004). J Phycol, 40, 505–516.

    Article  CAS  Google Scholar 

  13. Ahn, C.-Y., Chung, A.-S., & Oh, H.-M. (2002). J Phycol, 38, 695–704.

    Article  CAS  Google Scholar 

  14. Vincent, W. F. (1992). Hydrobiologia, 238, 37–52.

    Article  CAS  Google Scholar 

  15. Jansson, M. (1988). Hydrobiologia, 170, 177–189.

    Article  CAS  Google Scholar 

  16. Clark, D. R., Flynn, K. J., & Owens, N. J. P. (2002). New Phytologist, 155, 101–108.

    Article  CAS  Google Scholar 

  17. Vona, V., Rigano, V. D. M., Esposito, S., Carillo, P., Carfagna, S., & Rigano, C. (1999). Physiol Plant, 105, 288–293.

    Article  CAS  Google Scholar 

  18. Hill, W. (1996) In Algal ecology: Freshwater benthic ecosystems, (Stevenson, R.J.; Bothwell, M.L.; Lowe, R.L., eds.) Academic: pp 121–148.

  19. Muñoz, R., Köllner, C., & Guieysse, B. (2009). J Hazard Mater, 161, 29–34.

    Article  Google Scholar 

  20. Ras, M., Steyer, J.-P., & Bernard, O. (2013). Reviews in Environmental Science and Bio/Technology, 12, 153–164.

    Article  CAS  Google Scholar 

  21. Wolf, G., Picioreanu, C., & van Loosdrecht, M. C. M. (2007). Biotechnol Bioeng, 97, 1064–1079.

    Article  CAS  Google Scholar 

  22. Liehr, S. K., Suidan, M. T., & Eheart, J. W. (1990). Biotechnol Bioeng, 35, 233–243.

    Article  CAS  Google Scholar 

  23. Boelee, N.C.,Janssen, M.,Temmink, H.,Taparavičiūtė, L.,Khiewwijit, R.,Jánoska, A.,Buisman, C.J.N. and Wijffels, R.H. (2013), accepted for publication in Journal of Applied Phycology.

  24. Duboc, P.,Marison, I. and Stockar, U.v. (1999) In Handbook of thermal analysis and calorimetry (Kemp, R.B., Vol. 4, pp 287–309).

  25. Davis, L. S., Hoffmann, J. P., & Cook, P. W. (1990). J Phycol, 26, 611–617.

    Article  Google Scholar 

  26. Congestri, R., Di Pippo, F., De Philippis, R., Buttino, I., Paradossi, G., & Albertano, P. (2006). Aquat Microb Ecol, 45, 301–312.

    Article  Google Scholar 

  27. Healey, F. P. (1973). Critical reviews in microbiology, 3, 69–113.

    Article  CAS  Google Scholar 

  28. Temman, M., Paquette, J., & Vali, H. (2000). Geochim Cosmochim Acta, 64, 2417–2430.

    Article  Google Scholar 

  29. Lorens, R. B. (1981). Geochim Cosmochim Acta, 45, 553–561.

    Article  CAS  Google Scholar 

  30. Picot, B., Moersidik, S., Casellas, C., & Bontoux, J. (1993). Water Science & Technology, 28, 169–175.

    CAS  Google Scholar 

  31. Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Barragan, J., & Perales, J. A. (2013). Ecol Eng, 52, 143–153.

    Article  Google Scholar 

  32. Craggs, R., Sutherland, D., & Campbell, H. (2012). Journal of Applied Phycology, 24, 329–337.

    Article  CAS  Google Scholar 

  33. Olguín, E. J., Galicia, S., Mercado, G., & Peréz, T. (2003). Journal of Applied Phycology, 15, 249–257.

    Article  Google Scholar 

  34. Hulatt, C. J., & Thomas, D. N. (2011). Bioresource technology, 102, 6687–6695.

    Article  CAS  Google Scholar 

  35. Min, M., Wang, L., Li, Y., Mohr, M. J., Hu, B., Zhou, W., Chen, P., & Ruan, R. (2011). Appl Biochem Biotechnol, 165, 123–137.

    Article  CAS  Google Scholar 

  36. Chisti, Y. (2007). Biotechnol Adv, 25, 294–306.

    Article  CAS  Google Scholar 

  37. Brennan, L. and Owende, P. (2010) Renewable and sustainable energy reviews 14

  38. Norsker, N.-H., Barbosa, M. J., Vermuë, M. H., & Wijffels, R. H. (2011). Biotechnol Adv, 29, 24–27.

    Article  CAS  Google Scholar 

  39. Metcalf & Eddy, I. (2003) Wastewater engineering: treatment and reuse. (4th ed.), McGraw-Hill

  40. Pérez, J., Picioreanu, C., & Van Loosdrecht, M. (2005). Water Res, 39, 1311–1323.

    Article  Google Scholar 

  41. Azov, Y., Shelef, G., & Moraine, R. (1982). Biotechnol Bioeng, 24, 579–594.

    Article  CAS  Google Scholar 

  42. Heubeck, S., Craggs, R. J., & Shilton, A. (2007). Water Sci Technol, 55, 193–200.

    Article  CAS  Google Scholar 

  43. Andersen, R.A. (2005) Algal culturing techniques. Elsevier: p 578

  44. Dauta, A., Devaux, J., Piquemal, F., & Boumnich, L. (1990). Hydrobiologia, 207, 221–226.

    Article  Google Scholar 

  45. Reay, D. S., Nedwell, D. B., Priddle, J., & Ellis-Evans, J. C. (1999). Appl Environ Microbiol, 65, 2577–2584.

    CAS  Google Scholar 

  46. Powell, N., Shilton, A. N., Pratt, S., & Chisti, Y. (2008). Environ Sci Technol, 42, 5958–5962.

    Article  CAS  Google Scholar 

  47. Martínez, M. E., Jiménez, J. M., & El Yousfi, F. (1999). Bioresour Technol, 67, 233–240.

    Article  Google Scholar 

  48. KNMI (2013) Daggegevens van het weer in Nederland. http://www.knmi.nl/kd/daggegevens/download.html (February)

  49. Clegg, M., Gaedke, U., Boehrer, B., & Spijkerman, E. (2012). Oecologia, 169, 609–622.

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed in the TTIW-cooperation framework of Wetsus, Centre of Excellence for Sustainable Water Technology (www.wetsus.nl). Wetsus is funded by the Dutch Ministry of Economic Affairs, the European Union Regional Development Fund, the Province of Fryslân, the City of Leeuwarden and the EZ/Kompas program of the “Samenwerkingsverband Noord-Nederland”. The authors like to thank the participants of the research theme “Advanced waste water treatment” and the steering committee of STOWA for the fruitful discussions and their financial support. The authors also thank J. Tuinstra and W. Borgonje for their help building the pilot, R. Loos, R. Khiewwijit, J. Tessiaut, and L. Taparavičiūtė for their help operating the pilot and K. Sukacova for the taxonomical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. C. Boelee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boelee, N.C., Janssen, M., Temmink, H. et al. Nutrient Removal and Biomass Production in an Outdoor Pilot-Scale Phototrophic Biofilm Reactor for Effluent Polishing. Appl Biochem Biotechnol 172, 405–422 (2014). https://doi.org/10.1007/s12010-013-0478-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0478-6

Keywords

Navigation