Skip to main content
Log in

Predictions of Enzymatic Parameters: A Mini-Review with Focus on Enzymes for Biofuel

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymatic reactions are very basic processes in biological systems, and parameters related to enzymatic reactions always provide good indicators for understanding of mechanisms underlined in enzymatic reactions, for better controlling of enzymatic reactions, and for comparison of different enzymes. In this mini-review: first, parameters in enzymatic reactions were briefly reviewed from three different standpoints; second, predictions of parameters in enzymatic reactions without information on enzyme structure were shortly reviewed from viewpoints of geometric approach, graphic approach and compartmental approach; third, predictions of parameters in enzymatic reaction with information on enzyme structure were reviewed from the points of view of modeling, with 19 currently available databases, and 17 software packages and web servers; fourth, the current state of prediction on parameters in enzymatic reaction in biofuel industry with respect to cellulolytic enzymes were reviewed; fifth, the pros and cons for future development were discussed; and finally, a worked example was given in the Appendix to describe the whole procedures of prediction of enzymatic parameters in reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bairoch, A. (2000). Nucleic Acids Research, 28, 304–5.

    Article  CAS  Google Scholar 

  2. McDonald, A. G., Boyce, S., Moss, G. P., Dixon, H. B., & Tipton, K. F. (2007). BMC Biochemistry, 8, 14.

    Article  CAS  Google Scholar 

  3. McDonald, A. G., Boyce, S., & Tipton, K. F. (2009). Nucleic Acids Research, 37, D593–7.

    Article  CAS  Google Scholar 

  4. Bannert, C., Welfle, A., Aus-dem Spring, C., & Schomburg, D. (2010). BMC Bioinformatics, 11, 589.

    Article  CAS  Google Scholar 

  5. Chen, L. H., Kenyon, G. L., Curtin, F., Harayama, S., Bembenek, M. E., Hajipour, G., & Whitman, C. P. (1992). Journal of Biological Chemistry, 267, 17716–21.

    CAS  Google Scholar 

  6. Smith, S. (1994). FASEB Journal, 8, 1248–59.

    CAS  Google Scholar 

  7. Jeong, G. T., & Park, D. H. (2010). Applied Biochemistry and Biotechnology, 161, 195–208.

    Article  CAS  Google Scholar 

  8. Samhan-Arias, A. K., Tyurina, Y. Y., & Kagan, V. E. (2011). Journal of Clinical Biochemistry and Nutrition, 48, 91–5.

    Article  CAS  Google Scholar 

  9. Ishikawa, Y., & Fujii, S. (2011). Bioinformation, 6, 221–5.

    Article  Google Scholar 

  10. Smith, R. H., Jr., Jorgensen, W. L., Tirado-Rives, J., Lamb, M. L., Janssen, P. A., Michejda, C. J., & Kroeger Smith, M. B. (1998). Journal of Medical Chemistry, 41, 5272–86.

    Article  CAS  Google Scholar 

  11. Kumar, V., & Madan, A. K. (2005). European Journal of Pharmaceutical Sciences, 24, 213–8.

    Article  CAS  Google Scholar 

  12. Sárváry, E., Nemes, B., Járay, J., Dinya, E., Borka, P., Varga, M., Sulyok, B., Remport, A., Tóth, A., & Perner, F. (2000). Transplantation, 69, 1397–402.

    Article  Google Scholar 

  13. Wang, J. S., Araki, T., Ogawa, T., Sakai, M., Matsuoka, M., & Fukuda, H. (1999). Journal of Theoretical Biology, 196, 9–17.

    Article  CAS  Google Scholar 

  14. Kirchmair, J., Williamson, M. J., Tyzack, J. D., Tan, L., Bond, P. J., Bender, A., & Glen, R. C. (2012). Journal of Chemical Information and Modeling, 52, 617–48.

    Article  CAS  Google Scholar 

  15. Burgard, P., Rupp, A., Konecki, D. S., Trefz, F. K., Schmidt, H., & Lichter-Konecki, U. (1996). European Journal of Pediatrics, 155(Suppl 1), S11–5.

    Article  CAS  Google Scholar 

  16. Berrondo, M., & Gray, J. J. (2011). Proteins, 79, 2844–60.

    Article  CAS  Google Scholar 

  17. Chen, W., Feng, P., & Lin, H. (2012). Journal of Industrial Microbiology & Biotechnology, 39, 579–84.

    Article  CAS  Google Scholar 

  18. Saremy, S., Boroujeni, M. E., Bhattacharjee, B., Mittal, V., & Chatterjee, J. (2011). Bioinformation, 7, 379–83.

    Article  Google Scholar 

  19. Wu, X. Q., Wang, J., Lü, Z. R., Tang, H. M., Park, D., Oh, S. H., Bhak, J., Shi, L., Park, Y. D., & Zou, F. (2010). Applied Biochemistry and Biotechnology, 160, 1341–55.

    Article  CAS  Google Scholar 

  20. Li, J., Schneebeli, S. T., Bylund, J., Farid, R., & Friesner, R. A. (2011). Journal of Chemical Theory and Computation, 7, 3829–45.

    Article  CAS  Google Scholar 

  21. Wang, P., Wang, Y., & Su, Z. (2012). Applied Biochemistry and Biotechnology, 167, 62–72.

    Article  CAS  Google Scholar 

  22. Moors, S. L., Vos, A. M., Cummings, M. D., Van Vlijmen, H., & Ceulemans, A. (2011). Journal of Medical Chemistry, 54, 6098–105.

    Article  CAS  Google Scholar 

  23. Faust, K., & van Helden, J. (2012). Methods in Molecular Biology, 804, 107–30.

    Article  CAS  Google Scholar 

  24. Varga, E. G., Titchener-Hooker, N. J., & Dunnill, P. (2001). Biotechnology and Bioengineering, 74, 96–107.

    Article  CAS  Google Scholar 

  25. Nicholson, J. K., & Lindon, J. C. (2008). Nature, 455, 1054–6.

    Article  CAS  Google Scholar 

  26. Zhang, A., Sun, H., & Wang, X. (2012). Applied Biochemistry and Biotechnology, 168, 1718–27.

    Article  CAS  Google Scholar 

  27. Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., Hau, D. D., Psychogios, N., Dong, E., Bouatra, S., Mandal, R., Sinelnikov, I., Xia, J., Jia, L., Cruz, J. A., Lim, E., Sobsey, C. A., Shrivastava, S., Huang, P., Liu, P., Fang, L., Peng, J., Fradette, R., Cheng, D., Tzur, D., Clements, M., Lewis, A., De Souza, A., Zuniga, A., Dawe, M., Xiong, Y., Clive, D., Greiner, R., Nazyrova, A., Shaykhutdinov, R., Li, L., Vogel, H. J., & Forsythe, I. (2009). Nucleic Acids Research, 37, D603–10.

    Article  CAS  Google Scholar 

  28. OuYang, D., Xu, J., Huang, H., & Chen, Z. (2011). Applied Biochemistry and Biotechnology, 165, 148–54.

    Article  CAS  Google Scholar 

  29. Wiggins, J. (2011). Nephron Experimental Nephrology, 119(Suppl 1), e1–5.

    Article  Google Scholar 

  30. Gramer, G., Garbade, S. F., Blau, N., & Lindner, M. (2009). Journal of Inherited Metabolic Disease, 32, 52–7.

    Article  CAS  Google Scholar 

  31. Albaek, M. O., Gernaey, K. V., Hansen, M. S., & Stocks, S. M. (2012). Biotechnology and Bioengineering, 109, 950–61.

    Article  CAS  Google Scholar 

  32. Armstrong, F. A., & Hirst, J. (2011). Proceedings of National Academy of Sciences of United States of American, 108, 14049–54.

    Article  CAS  Google Scholar 

  33. Rothlisberger, U., Carloni, P., Doclo, K., & Parrinello, M. (2000). Journal of Biological Inorganic Chemistry, 5, 236–50.

    Article  CAS  Google Scholar 

  34. Michaelis, L., & Menten, M. L. (1913). Biochemische Zeitschrift, 49, 333–69.

    CAS  Google Scholar 

  35. Price, N. C. (1979). Trends in Biochemical Sciences, 4, pN272.

    Article  Google Scholar 

  36. Cheng, Y., & Prusoff, W. H. (1973). Biochemical Pharmacology, 22, 3099–108.

    Article  CAS  Google Scholar 

  37. Ebrahimi, M., Lakizadeh, A., Agha-Golzadeh, P., Ebrahimie, E., & Ebrahimi, M. (2011). PLoS One, 6, e23146.

    Article  CAS  Google Scholar 

  38. Barthelmes, J., Ebeling, C., Chang, A., Schomburg, I., & Schomburg, D. (2007). Nucleic Acids Research, 35, D511–4.

    Article  CAS  Google Scholar 

  39. Chang, A., Scheer, M., Grote, A., Schomburg, I., & Schomburg, D. (2009). Nucleic Acids Research, 37, D588–92.

    Article  CAS  Google Scholar 

  40. Scheer, M., Grote, A., Chang, A., Schomburg, I., Munaretto, C., Rother, M., Söhngen, C., Stelzer, M., Thiele, J., & Schomburg, D. (2011). Nucleic Acids Research, 39, D670–6.

    Article  CAS  Google Scholar 

  41. Eadie, G. S. (1942). Journal of Biological Chemistry, 146, 85–93.

    CAS  Google Scholar 

  42. Hofstee, B. H. J. (1959). Nature, 184, 1296–8.

    Article  CAS  Google Scholar 

  43. Hanes, C. S. (1932). Biochemical Journal, 26, 1406–21.

    CAS  Google Scholar 

  44. Lineweaver, H., & Burk, D. (1934). Journal of the American Chemical Society, 56, 658–66.

    Article  CAS  Google Scholar 

  45. Bravo, I. G., Busto, F., De Arriaga, D., Ferrero, M. A., Rodríguez-Aparicio, L. B., Martínez-Blanco, H., & Reglero, A. (2001). Biochemical Journal, 358(Pt 3), 573–83.

    CAS  Google Scholar 

  46. Biggs, N., Lloyd, E., & Wilson, R. (1986) Graph Theory. Oxford University Press

  47. King, E. L., & Altman, C. (1956). Journal of Physical Chemistry, 60, 1375–8.

    Article  CAS  Google Scholar 

  48. Weber, H., & Richterich, R. (1963). Klinische Wochenschrift, 41, 665–7.

    Article  CAS  Google Scholar 

  49. Jenkins, W. T. (1970). Analytical Biochemistry, 38, 409–16.

    Article  CAS  Google Scholar 

  50. Katsumata, M. (1972). Journal of Theoretical Biology, 36, 327–38.

    Article  CAS  Google Scholar 

  51. Diachina, E. G. (1973). Laboratornoe Delo, 2, 120–1.

    CAS  Google Scholar 

  52. Ermakov, N. V., & Tokarev, I. N. (1982). Laboratornoe Delo, 10, 17–21.

    Google Scholar 

  53. Chou, K. C. (1983). Biophysical Chemistry, 17, 51–5.

    Article  CAS  Google Scholar 

  54. Zhou, G. P., & Deng, M. H. (1984). Biochemical Journal, 222, 169–76.

    CAS  Google Scholar 

  55. Zhao, M. (1992). Biochemical Journal, 287(Pt 2), 391–3.

    CAS  Google Scholar 

  56. Chou, K. C. (1989). Journal of Biological Chemistry, 264, 12074–9.

    CAS  Google Scholar 

  57. Lather, V., & Madan, A. K. (2005). Journal of Molecular Graphics and Modelling, 23, 339–45.

    Article  CAS  Google Scholar 

  58. Comte, P., Vassiliev, S., Houghten, S., & Bruce, D. (2011). Biosystems, 105, 263–70.

    Article  CAS  Google Scholar 

  59. Yuki, H., Honma, T., Hata, M., & Hoshino, T. (2012). Bioorganic and Medicinal Chemistry, 20, 775–83.

    Article  CAS  Google Scholar 

  60. Chou, K. C. (2010). Current Drug Metabolism, 11, 369–78.

    Article  CAS  Google Scholar 

  61. Chou, K. C., Jiang, S. P., Liu, W. M., & Fee, C. H. (1979). Scientia Sinica, 22, 341–58.

    CAS  Google Scholar 

  62. Chou, K. C. (1990). Biophysical Chemistry, 35, 1–24.

    Article  CAS  Google Scholar 

  63. Wu, G. (1996). Pharmacological Research, 33, 379–83.

    Article  CAS  Google Scholar 

  64. el Kebbaj, M. S., & Latruffe, N. (1986). Archives of Biochemistry and Biophysics, 244, 662–70.

    Article  Google Scholar 

  65. Musch, W., Thimpont, J., Vandervelde, D., Verhaeverbeke, I., Berghmans, T., & Decaux, G. (1995). American Journal of Medicine, 99, 348–55.

    Article  CAS  Google Scholar 

  66. Prigent, A. (2008). Seminars in Nuclear Medicine, 38, 32–46.

    Article  Google Scholar 

  67. Salgado, J. V., Neves, F. A., Bastos, M. G., França, A. K., Brito, D. J., Santos, E. M., & Salgado Filho, N. (2010). Brazilian Journal of Medical and Biological Research, 43, 528–36.

    Article  CAS  Google Scholar 

  68. Gotch, F. A. (1998). Nephrology, Dialysis, Transplantation, 13(Suppl 6), 10–4.

    Article  CAS  Google Scholar 

  69. Gotch, F. A., Sargent, J. A., & Keen, M. L. (2000). Kidney International, Suppl 76, S3–S18.

    Article  Google Scholar 

  70. Sigel, R., Sigel, A., & Sigel, H. (2007). The ubiquitous roles of cytochrome P450 proteins: metal ions in life sciences. New York: Wiley.

    Book  Google Scholar 

  71. Mishra, N. K. (2011). Expert Opinion on Drug Metabolism and Toxicology, 7, 1211–31.

    Article  CAS  Google Scholar 

  72. Long, W. F., & Labute, P. (2010). Journal of Computer-Aided Molecular Design, 24, 907–16.

    Article  CAS  Google Scholar 

  73. Chen, X., Wang, X., Li, Z., Kong, L., Liu, G., Fu, J., & Wang, A. (2012). Gene, 495, 170–7.

    Article  CAS  Google Scholar 

  74. Duverle, D. A., & Mamitsuka, H. (2012). Briefings in Bioinformatics, 13, 337–49.

    Article  CAS  Google Scholar 

  75. VandenBrink, B. M., Foti, R. S., Rock, D. A., Wienkers, L. C., & Wahlstrom, J. L. (2012). Drug Metabolism and Disposition, 40, 47–53.

    Article  CAS  Google Scholar 

  76. Choi, K., & Kim, S. (2011). Journal of Bioinformatics and Computational Biology, 9, 597–611.

    Article  CAS  Google Scholar 

  77. Chen, L., Feng, K. Y., Cai, Y. D., Chou, K. C., & Li, H. P. (2010). BMC Bioinformatics, 11, 293.

    Article  CAS  Google Scholar 

  78. Basit, N., & Wechsler, H. (2011). Advances in Bioinformatics, 958129.

  79. Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2011). Journal of Visualized Experiments, 57, e3259.

    Google Scholar 

  80. Needleman, S. B., & Wunsch, C. D. (1970). Journal of Molecular Biology, 48, 443–53.

    Article  CAS  Google Scholar 

  81. Wu, G. (2000). Medical Hypotheses, 54, 748–9.

    Article  CAS  Google Scholar 

  82. Liu, T., Lin, Y., Wen, X., Jorissen, R. N., & Gilson, M. K. (2007). Nucleic Acids Research, 35, D198–201.

    Article  CAS  Google Scholar 

  83. Porter, C. T., Bartlett, G. J., & Thornton, J. M. (2004). Nucleic Acids Research, 32, D129–33.

    Article  CAS  Google Scholar 

  84. Bartlett, G. J., Porter, C. T., Borkakoti, N., & Thornton, J. M. (2002). Journal of Molecular Biology, 324, 105–21.

    Article  CAS  Google Scholar 

  85. Torrance, J. W., Bartlett, G. J., Porter, C. T., & Thornton, J. M. (2005). Journal of Molecular Biology, 347, 565–81.

    Article  CAS  Google Scholar 

  86. Quester, S., & Schomburg, D. (2011). BMC Bioinformatics, 12, 376.

    Article  Google Scholar 

  87. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., & Tanabe, M. (2012). Nucleic Acids Research, 40, D109–14.

    Article  CAS  Google Scholar 

  88. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., & Hirakawa, M. (2010). Nucleic Acids Research, 38, D355–60.

    Article  CAS  Google Scholar 

  89. Holliday, G. L., Andreini, C., Fischer, J. D., Rahman, S. A., Almonacid, D. E., Williams, S. T., & Pearson, W. R. (2012). Nucleic Acids Research, 40, D783–9.

    Article  CAS  Google Scholar 

  90. Caspi1, R., Altman, T., Dale, J. M., Dreher, K., Fulcher, C. A., Gilham, F., Kaipa, P., Karthikeyan, A. S., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., Paley, S., Popescu, L., Pujar, A., Shearer, A. G., Zhang, P., & Karp, P. D. (2010) Nucleic Acids Research, 38 (suppl 1), D473–D479

  91. Zhang, P., Foerster, H., Tissier, C. P., Mueller, L., Paley, S., Karp, P. D., & Rhee, S. Y. (2005). Plant Physiology, 138, 27–37.

    Article  CAS  Google Scholar 

  92. Caspi, R., Foerster, H., Fulcher, C. A., Hopkinson, R., Ingraham, J., Kaipa, P., Krummenacker, M., Paley, S., Pick, J., Rhee, S. Y., Tissier, C., Zhang, P., & Karp, P. D. (2006). Nucleic Acids Research, 34, D511–6.

    Article  CAS  Google Scholar 

  93. Caspi, R., Foerster, H., Fulcher, C. A., Kaipa, P., Krummenacker, M., Latendresse, M., Paley, S., Rhee, S. Y., Shearer, A. G., Tissier, C., Walk, T. C., Zhang, P., & Karp, P. D. (2008). Nucleic Acids Research, 36, D623–31.

    Article  CAS  Google Scholar 

  94. Caspi, R., Altman, T., Dreher, K., Fulcher, C. A., Subhraveti, P., Keseler, I. M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., Ong, Q., Paley, S., Pujar, A., Shearer, A. G., Travers, M., Weerasinghe, D., Zhang, P., & Karp, P. D. (2012). Nucleic Acids Research, 40, D742–53.

    Article  CAS  Google Scholar 

  95. Lespinet, O., & Labedan, B. (2006). BMC Bioinformatics, 7, 436.

    Article  CAS  Google Scholar 

  96. Von Grotthuss, M., Plewczynski, D., Ginalski, K., Rychlewski, L., & Shakhnovich, E. I. (2006). BMC Bioinformatics, 7, 53.

    Article  CAS  Google Scholar 

  97. Arcuri, H. A., Zafalon, G. F., Marucci, E. A., Bonalumi, C. E., da Silveira, N. J., Machado, J. M., de Azevedo, W. F., & Jr Palma, M. S. (2010). BMC Bioinformatics, 11, 12.

    Article  CAS  Google Scholar 

  98. Hoppe, A., Hoffmann, S., Gerasch, A., Gille, C., & Holzhütter, H. G. (2011). BMC Bioinformatics, 12, 28.

    Article  Google Scholar 

  99. Schremmer, S. D., Waser, M. R., Kohn, M. C., & Garfinkel, D. (1984). Computers and Biomedical Research, 17, 289–301.

    Article  CAS  Google Scholar 

  100. Kohn, M. C., Menten, L. E., & Garfinkel, D. (1979). Computers and Biomedical Research, 12, 461–9.

    Article  CAS  Google Scholar 

  101. Kohn, M. C., Menten, L. E., & Garfinkel, D. (1981). Computers and Biomedical Research, 14, 91–102.

    Article  Google Scholar 

  102. Damboský, J., Prokop, M., & Koca, J. (2001). Trends in Biochemical Sciences, 26, 71–3.

    Article  Google Scholar 

  103. Prokop, M., Damborský, J., & Koca, J. (2000). Bioinformatics, 16, 845–6.

    Article  CAS  Google Scholar 

  104. Prokop, M., Adam, J., Kríz, Z., Wimmerová, M., & Koca, J. (2008). Bioinformatics, 24, 1955–6.

    Article  CAS  Google Scholar 

  105. Schwarz, R., Musch, P., von Kamp, A., Engels, B., Schirmer, H., Schuster, S., & Dandekar, T. (2005). BMC Bioinformatics, 6, 135.

    Article  CAS  Google Scholar 

  106. Otto, T. D., Guimarães, A. C., Degrave, W. M., & de Miranda, A. B. (2008). BMC Bioinformatics, 9, 544.

    Article  CAS  Google Scholar 

  107. Latendresse, M., & Karp, P. D. (2011). BMC Bioinformatics, 12, 176.

    Article  Google Scholar 

  108. Li, G. H., & Huang, J. F. (2010). BMC Bioinformatics, 11, 439.

    Article  CAS  Google Scholar 

  109. Audit, B., Levy, E. D., Gilks, W. R., Goldovsky, L., & Ouzounis, C. A. (2007). BMC Bioinformatics, 8(Suppl 4), S3.

    Article  CAS  Google Scholar 

  110. Hung, S. S., Wasmuth, J., Sanford, C., & Parkinson, J. (2010). Bioinformatics, 26, 1690–8.

    Article  CAS  Google Scholar 

  111. Arakaki, A. K., Huang, Y., & Skolnick, J. (2009). BMC Bioinformatics, 10, 107.

    Article  CAS  Google Scholar 

  112. Bevc, S., Konc, J., Stojan, J., Hodošček, M., Penca, M., Praprotnik, M., & Janežič, D. (2011). PLoS One, 6, e22265.

    Article  CAS  Google Scholar 

  113. Yamanishi, Y., Hattori, M., Kotera, M., Goto, S., & Kanehisa, M. (2009). Bioinformatics, 25, i179–86.

    Article  CAS  Google Scholar 

  114. Shen, H. B., & Chou, K. C. (2007). Biochemical and Biophysical Research Communications, 364, 53–9.

    Article  CAS  Google Scholar 

  115. Li, C., Li, Y., Zhang, X., Stafford, P., & Dinu, V. (2009). BMC Bioinformatics, 10, 286.

    Article  CAS  Google Scholar 

  116. Moriya, Y., Shigemizu, D., Hattori, M., Tokimatsu, T., Kotera, M., Goto, S., & Kanehisa, M. (2010). Nucleic Acids Research, 38, W138–43.

    Article  CAS  Google Scholar 

  117. Zhang, K., Xu, Y., & Chen, G. (2008). International Journal of Bioinformatics Research and Applications, 4, 295–305.

    Article  CAS  Google Scholar 

  118. Yan, S., Shi, D., Nong, H., & Wu, G. (2011). Guangxi Sciences, 18, 253–60.

    Google Scholar 

  119. Yan, S., & Wu, G. (2011). Applied Biochemistry and Biotechnology, 165, 856–69.

    Article  CAS  Google Scholar 

  120. Yan, S., & Wu, G. (2012). Applied Biochemistry and Biotechnology, 166, 997–1107.

    Article  CAS  Google Scholar 

  121. Yan, S. M., & Wu, G. (2011). Protein Peptide Letters, 18, 1053–7.

    Article  CAS  Google Scholar 

  122. Yan, S., & Wu, G. (2012). Protein Peptide Letters, 19, 29–39.

    Article  CAS  Google Scholar 

  123. Yan, S., Shi, D., Nong, H., & Wu, G. (2012). Interdisciplinary Science Computational Life Sciences, 4, 46–53.

    Article  CAS  Google Scholar 

  124. Yan, S., & Wu, G. (2011). Enzyme Engineering, 1, 102.

    Google Scholar 

  125. Yan, S., & Wu, G. (2012). Protein Peptide Letters, 20, 255–64.

    Google Scholar 

  126. Carroll, A., & Somerville, C. (2009). Annual Review of Plant Biology, 60, 165–82.

    Article  CAS  Google Scholar 

  127. Barnard, D., Casanueva, A., Tuffin, M., & Cowan, D. (2010). Environmental Technology, 31, 871–88.

    Article  CAS  Google Scholar 

  128. van Zyl, W. H., Bloom, M., & Viktor, M. J. (2012). Applied Microbiology and Biotechnology, 95, 1377–88.

    Article  CAS  Google Scholar 

  129. Fuciños, P., González, R., Atanes, E., Sestelo, A. B., Pérez-Guerra, N., Pastrana, L., & Rúa, M. L. (2012). Methods in Molecule Biology, 861, 239–66.

    Article  CAS  Google Scholar 

  130. Duan, C. J., & Feng, J. X. (2010). Biotechnology Letters, 32, 1765–75.

    Article  CAS  Google Scholar 

  131. Yu, E. H., Prodanovic, R., Güven, G., Ostafe, R., & Schwaneberg, U. (2011). Applied Biochemistry and Biotechnology, 165, 1448–57.

    Article  CAS  Google Scholar 

  132. Nghiem, N. P., Taylor, F., Johnston, D. B., Shetty, J. K., & Hicks, K. B. (2011). Applied Biochemistry and Biotechnology, 165, 870–82.

    Article  CAS  Google Scholar 

  133. Ribeiro, B. D., de Castro, A. M., Coelho, M. A., & Freire, D. M. (2011). Enzyme Research, 2011, 615803.

    Google Scholar 

  134. Struck, A. W., Thompson, M. L., Wong, L. S., & Micklefield, J. (2012). Chembiochem, 13, 2642–55.

    Article  CAS  Google Scholar 

  135. Jeong, Y. S., Na, H. B., Kim, S. K., Kim, Y. H., Kwon, E. J., Kim, J., Yun, H. D., Lee, J. K., & Kim, H. (2012). Applied Biochemistry and Biotechnology, 166, 1328–39.

    Article  CAS  Google Scholar 

  136. Sheldon, R. A. (2011). Applied Microbiology and Biotechnology, 92, 467–77.

    Article  CAS  Google Scholar 

  137. Skoko, N., Baralle, M., Tisminetzky, S., & Buratti, E. (2011). Molecular Biotechnology, 48, 290–7.

    Article  CAS  Google Scholar 

  138. Li, Q., Zhao, Q., Hu, Y., & Wang, H. (2006). Biotechnological Journal, 1, 1205–14.

    CAS  Google Scholar 

  139. Ibrahim, C. O. (2008). Bioresource Technology, 99, 4572–82.

    Article  CAS  Google Scholar 

  140. de Castro, A. M., Carvalho, D. F., Freire, D. M., & Dos Reis Castilho, L. (2010). Enzyme Research, 2010, 576872.

    Google Scholar 

  141. Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., & Kanehisa, M. (2008). Nucleic Acids Research, 36, D202–5.

    Article  CAS  Google Scholar 

  142. Wu, G., & Yan, S. (2008). Lecture notes on computational mutation. New York: Nova Science.

    Google Scholar 

  143. Yang, X. Y., Shi, X. H., Meng, X., Li, X. L., Lin, K., Qian, Z. L., Feng, K. Y., Kong, X. Y., & Cai, Y. D. (2010). Protein Peptide Letters, 17, 899–908.

    Article  CAS  Google Scholar 

  144. Atchley, W. R., Zhao, J., Fernandes, A. D., & Druke, T. (2005). Proceedings of National Academy of Sciences of United States of American, 102, 6395–400.

    Article  CAS  Google Scholar 

  145. Zamyatin, A. A. (1972). Progress in Biophysics and Molecular Biology, 24, 107–23.

    Article  Google Scholar 

  146. Darby, N. J., & Creighton, T. E. (1993). Journal of Molecular Biology, 232, 873–96.

    Article  CAS  Google Scholar 

  147. Kyte, J., & Doolittle, R. F. (1982). Journal of Molecular Biology, 157, 105–32.

    Article  CAS  Google Scholar 

  148. Trinquier, G., Sanejouand, Y. H., & Hausman, R. E. (1998). Protein Engineering, 11, 153–69.

    Article  CAS  Google Scholar 

  149. Cooper, G. M. (2004). The cell: a molecular approach (p. 51). Washington, D.C: ASM.

    Google Scholar 

  150. Dwyer, D. S. (2005). BMC Chemical Biology, 5, 2.

    Article  CAS  Google Scholar 

  151. Chou, P. Y., & Fasman, G. D. (1978). Advances in Enzymology and Related Subjects of Biochemistry, 47, 45–148.

    CAS  Google Scholar 

  152. Burlingame, A. L., & Carr, S. A. (1996). Mass spectrometry in the biological sciences. Totowa, NJ: Humana.

    Book  Google Scholar 

  153. Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural network design. Boston, MA: PWS.

    Google Scholar 

  154. Demuth, H., & Beale, M. (2001) Neural Network Toolbox for Use with MatLab. User’s guide, version 4.

  155. MathWorks Inc. (2001) MatLab—the language of technical computing (version 6.1.0.450, release 12.1), 1984–2001.

  156. Chou, K. C. (2011). Journal of Theoretical Biology, 273, 236–47.

    Article  CAS  Google Scholar 

  157. Chou, K. C., & Shen, H. B. (2007). Analytical Biochemistry, 370, 1–16.

    Article  CAS  Google Scholar 

  158. Chou, K. C., & Shen, H. B. (2010). PLoS One, 5, e9931.

    Article  CAS  Google Scholar 

  159. Wu, G., Baraldo, M., & Furlanut, M. (1995). Pharmacological Research, 32, 241–8.

    Article  CAS  Google Scholar 

  160. Wu, G. (1995). Pharmacological Research, 31, 393–9.

    Article  CAS  Google Scholar 

  161. Zhou, W., Irwin, D. C., Escovar-Kousen, J., & Wilson, D. B. (2004). Biochemistry, 43, 9655–63.

    Article  CAS  Google Scholar 

  162. Kang, H. J., & Ishikawa, K. (2007). Journal of Microbiology and Biotechnology, 17, 1249–53.

    CAS  Google Scholar 

  163. Kim, H. W., Takagi, Y., Hagihara, Y., & Ishikawa, K. (2007). Bioscience, Biotechnology and Biochemistry, 71, 2585–7.

    Article  CAS  Google Scholar 

  164. The UniProt Consortium. (2010) Nucleic Acids Research, 38, D142–D148.

  165. Akaike, H. (1974). IEEE Transactions on Automatic Control, 19, 716–23.

    Article  Google Scholar 

  166. Feller, W. (1968). An introduction to probability theory and its applications. 3rd ed. Vol, I. New York: Wiley.

    Google Scholar 

  167. http://www.dreamscitech.com/Web-Based-Computation/ADP.htm, (2013).

Download references

Acknowledgments

This study was partly supported by Guangxi Science Foundation (12237022, 13-051-08, 13-051-50, 1347704-1 and 2013GXNSDA019007) and by BaGui Scholars Program Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Wu.

Appendix—a worked example

Appendix—a worked example

In order to fully explain the prediction of parameters in enzymatic reaction, here we present a worked example to demonstrate the prediction of K m in cellulases (EC 3.2.1.4) with all the procedures discussed in the “Current State of Predicting Parameters in Enzymatic Reactions in Biofuel Industry” section.

In BRENDA [3840], there were four cellulases with their sequence information under the category of K m as functional parameters, of which two cellulases were documented with their mutants [162]. There were three reduced-size mutants and 17 site-directed mutagenesis from the cellulose O58925 isolated from Pyrococcus horikoshii [163, 164]. Also, two K m values were documented in each of the cellulose O58925, Q9REW0, and Q9X273. In total, BRENDA provided 29 matched sequences and K m values of cellulases (Table 6), and their corresponding sequences were found in Universal Protein Resource [165]. The sequences of those 29 enzymes were coded each time with an amino acid property or the amino acid distribution probability, which is a property combining amino acid property and property of whole protein, and coded property served as predictors and their K m as predicted value in neural network model.

Table 6 Grouped cellulases for training and validation with their recorded and predicted K m values, where mean ± SD are based on 100 predictions

In this worked example, we used not only the 20-1 feedforward backpropagation neural network to model the relationship between coded enzyme sequences and their K m values (Fig. 1), but also different combinations of layers and neurons of neural network model, including the models of 20-5-1, 20-10-1, 20-10-5-1, 20-30-10-5-1, and 20-30-20-12-5-1 (Fig. 2).

The issue of convergence can be seen in Fig. 3, which in fact plays a role to screen 25 predictors, that is, the predictors that do not converge should be eliminated from predictions as shown in Table 5 that summarized all our previous studies including this worked example.

As discussed in the “Current State of Predicting Parameters in Enzymatic Reactions in Biofuel Industry” section, linear regression was used to evaluate the predicted K m with their recorded ones. The Chi-square test was used to compare the predicted K m, which falls into different ranges of recorded K m with respect to various predictors. Figure 2 summarizes the predictive performances of six different neural network models with eleven different predictors. This is a process to select the best predictive model among various models, which is important because the Akaike information criterion [166] suggested how to select a model statistically. In Figure 2, R and P values were used to evaluate the predictive performance. As can be seen from top to bottom, the more layers a neural network model has, the better the predictive performance is. However, this improvement is mainly related to the fitting. For the validation, the best performances were obtained from 20-10-1 model, beyond which the increase of neuron layers could not improve the predictions. On the other hand, the problem with multi-layer is that the model parameters increase unnecessarily, which compromise the model identification although the predictions are better. Thus, the 20-10-1 neural network model should be the best choice for predictions. With respect to predictors, the amino acid properties seem to work in a similar way because their predictions are similar while the prediction using the amino acid distribution probability, which combines the properties of both amino acids and whole protein, is better, except the R value for validation. Another characteristic is that amino acid distribution probability can get good predictive performance using 2-layer models, which can dramatically reduce model parameters compared to the use of multi-layer models.

Based on the predicted K m of cellulases listed in Table 7, we need to furthermore look at the predictive performance in much greater details as showed in Table 6, where we stratified the predicted K m according to its mean value of 100 predictions with respect to different ranges of recorded K m. For example, the recorded K m of cellulase O58925 H155A (row 3 Table 6) was 6.69, so the values less than or equal to ±10 % of 6.69 ranged from 6.021 to 7.359, and we can see that all the predicted K m using various predictors did not fall into this range (row 3, Table 7). A similar manner was applied to all the ranges listed in Table 7 for all 29 cellulases. As seen in Table 7, the prediction using the amino acid distribution probability as predictor (last column) is statistically better than the predictions using other predictors. Figure 5 displays the results of training and validation groups using the predictor f(i + 1).

Table 7 Predicted K m within different ranges of recorded K m with respect to different predictors
Fig. 5
figure 5

Linear regression between recorded K m and predicted K m of cellulases in training and validation groups using the predictor f(i + 1), respectively

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, S., Wu, G. Predictions of Enzymatic Parameters: A Mini-Review with Focus on Enzymes for Biofuel. Appl Biochem Biotechnol 171, 590–615 (2013). https://doi.org/10.1007/s12010-013-0328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0328-6

Keywords

Navigation