Skip to main content
Log in

Production of Microbial Rhamnolipid by Pseudomonas Aeruginosa MM1011 for Ex Situ Enhanced Oil Recovery

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g−1, respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a biosurfactant of choice for actual MEOR applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banat, I. M. (1995). Bioresource Technology, 51, 1–12.

    Article  CAS  Google Scholar 

  2. Amani, H., Mehrnia, M. R., Haghighi, M., Sarrafzadeh, M. H., & Soudi, M. R. (2010). Applied Biochemistry and Biotechnology, 162, 510–523.

    Article  CAS  Google Scholar 

  3. Yeh, M. S., Wei, Y. H., & Chang, J. S. (2006). Process Biochemistry, 41, 1799–1805.

    Article  CAS  Google Scholar 

  4. Fang, X., Wang, Q., Bai, B., Liu, X. C., Tang, Y., Shulder, P. J., et al. (2007). Engineering rhamnolipid biosurfactants as agents for microbial enhanced oil recovery. SPE No: 106048.

  5. Amani, H., Sarrafzadeh, M. H., Haghighi, M., & Mehrnia, M. R. (2010). Petroleum Science and Engineering, 75, 209–214.

    Article  CAS  Google Scholar 

  6. Desai, J. D., & Banat, I. M. (1997). Microbiology and Molecular Biology, 61, 47–64.

    CAS  Google Scholar 

  7. Banat, I. M., Makkar, R. S., & Cameortra, S. S. (2005). Applied Microbiology and Biotechnology, 53, 495–508.

    Article  Google Scholar 

  8. Joshi, S., Bharucha, C., Jha, S., Yadav, S., Nerurkar, A., & Desai, A. J. (2008). Bioresource Technology, 99, 195–199.

    Article  CAS  Google Scholar 

  9. Abouseoud, M., Maachi, R., & Amrane, A. (2007). Communicating Current Research and Educational Topics and Trends in Applied Microbiology, 340, 340–347. A. Méndez-Vilas (Ed.).

    Google Scholar 

  10. Kim, H. S., Yoon, B. D., Lee, C. H., Suh, H. H., Oh, H. M., & Katsuragy, T. (1997). Fermentation and Bioengineering, 84, 41–46.

    Article  Google Scholar 

  11. Wei, Y. H., & Chu, I. M. (1998). Enzyme and Microbial Technology, 22, 724–728.

    Article  CAS  Google Scholar 

  12. Davis, D. A., Lynch, H. C., & Varley, J. (1999). Enzyme and Microbial Technology, 25, 322–329.

    Article  CAS  Google Scholar 

  13. Makkar, R. S., & Cameotra, S. C. (1999). Surfactants and Detergents, 2(2), 237–241.

    Article  CAS  Google Scholar 

  14. Maier, R. M., & Soberon-Chavez, G. (2000). Applied Microbiology and Biotechnology, 54, 625–633.

    Article  CAS  Google Scholar 

  15. Abalos, A., Pinaso, A., Infante, M. R., Casals, M., Garcia, F., & Maneresa, A. (2001). Langmuir, 17, 1367–1371.

    Article  CAS  Google Scholar 

  16. Vater, J., Kablitz, B., Wilde, C., Franke, P., Mehta, N., & Cameotra, S. S. (2002). Microbiology, 68, 6210–6219.

    CAS  Google Scholar 

  17. Wei, Y. H., Wang, L. F., & Chang, J. S. (2004). Biotechnology Progress, 20, 979–983.

    Article  CAS  Google Scholar 

  18. Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M., & McInerney, M. J. (2004). Microbiological Methods, 56, 339–347.

    Article  CAS  Google Scholar 

  19. Chen, C. Y., Baker, S. C., & Darton, R. C. (2006). Chemical Technology & Biotechnology, 81, 1923–1931.

    Article  CAS  Google Scholar 

  20. Kim, H. S., Yoon, B. D., Choung, D. H., Oh, H. M., Katsuragi, T., & Tani, Y. (1999). Applied Microbiology and Biotechnology, 52, 713–721.

    Article  CAS  Google Scholar 

  21. Demin, W., Jiecheng, C., Qun, L., Lizhong, L., Changjiu, Z., & Jichun, H. (1999). An alkaline biosurfactant polymer flooding pilots in daqing oil field. SPE No:57304.

  22. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Engineering Geology, 60, 371–380.

    Article  Google Scholar 

  23. Daoshan, L., Shouliang, L., Yi, L., & Demin, W. (2004). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 244, 53–60.

    Article  Google Scholar 

  24. Ramirez, W.F. (1987). Application of optimal control theory to enhanced oil recovery. First edition. Amsterdam, Netherlands: Elsevier.

  25. Bubela, B. (1987). Surfactant Science Series, 25, 143–161.

    CAS  Google Scholar 

  26. Sen, R. (2008). Progress in Energy and Combustion Science, 34(6), 714–724.

    Article  CAS  Google Scholar 

  27. Faroug Ali, S. M., and Thomas, S. (1994). Scientia Iranica, 1, No. 3

  28. Thomas, S. (2008). Oil Gas Science and Technology, 63, 9–19.

    Article  CAS  Google Scholar 

  29. Wang, Q. H., Fang, X. D., Bai, B. J., Liang, X. L., Shuler, P. J., Goddard, W. A., et al. (2007). Biotechnology and Bioengineering, 98, 842–853.

    Article  CAS  Google Scholar 

  30. Müller, M. M., Hörmann, B., Syldatk, C., & Hausmann, R. (2010). Applied Microbiology and Biotechnology, 87, 167–174.

    Article  Google Scholar 

  31. Hörmann, B., Müller, M. M., Syldatk, C., & Hausmann, R. (2010). European Journal of Lipid Science and Technology, 112, 674–680.

    Article  Google Scholar 

  32. Syldatk, C., Lang, S., Wagner, F., Wray, V., & Witte, L. (1985). Zeitschrift für Naturforschung. Section C, 40, 51–60.

    CAS  Google Scholar 

  33. Singh, A., Hamme, J. D., & Ward, O. P. (2007). Biotechnology Advances, 25, 99–121.

    Article  CAS  Google Scholar 

  34. Zekri, A. Y., Almehaideb, R. A., & Chaalal, O. (1999). Project of increasing oil recovery from UAE reservoir using bacteria flooding, an experimental approach. SPE No:56827.

  35. Jinfeng, L., Lijun, M., Bozhong, M., Rulin, L., Fangtian, N., & Jiaxi, Z. (2005). Petroleum Science and Engineering, 48, 265–271.

    Article  Google Scholar 

  36. Soudmand-asali, A., Ayatollahi, S., Mohabatkar, H., Zareie, M., & Shariatpanahi, F. (2007). Petroleum Science and Engineering, 58, 161–172.

    Article  Google Scholar 

  37. Schenk, T., Schuphan, I., & Schmidt, B. (1995). Chromatography, 693, 7–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sandra Baumann, Barbara Hörmann, Michaela Kugel, Markus Andre, and Mareike Perzborn for their experimental help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Amani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amani, H., Müller, M.M., Syldatk, C. et al. Production of Microbial Rhamnolipid by Pseudomonas Aeruginosa MM1011 for Ex Situ Enhanced Oil Recovery. Appl Biochem Biotechnol 170, 1080–1093 (2013). https://doi.org/10.1007/s12010-013-0249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0249-4

Keywords

Navigation