Skip to main content
Log in

Proteome-Based Profiling of Hypercellulase-Producing Strains Developed Through Interspecific Protoplast Fusion Between Aspergillus nidulans and Aspergillus tubingensis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Thirty heterokaryons, formed by protoplast fusion of Aspergillus nidulans and Aspergillus tubingensis, were selected on the basis of their ability to grow on 2-deoxyglucose (0.2 %, w/v) and intermediate spore color. These heterokaryons were studied for cellulase production using shake flask and solid substrate cultures at 40 °C. Fusants 51 and 28 exhibited appreciably higher levels of endoglucanase, cellobiohydrolase, β-glucosidase, and FPase activities when compared with parental strains. Employing proteomic-based approaches, the differential expression of proteins in secretome of fusants and parental strains were analyzed using two-dimensional electrophoresis. The expression of some of the proteins in the fusants was found to be up/downregulated. The upregulated proteins in the fusant 51 were identified by liquid chromatography–mass spectroscopy as endoxylanase, endochitinase, β-glucosidase, as well as hypothetical proteins. The cellulases produced by fusants 28 and 51 showed improved saccharification of alkali treated rice straw when compared with the parental strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Murashima, K., Nishimura, T., Nakamura, Y., Koga, J., Moriya, T., Sumida, N., Yaguchi, T., & Kono, T. (2002). Enzyme and Microbial Technology, 30, 319–326.

    Article  CAS  Google Scholar 

  2. Adsul, M. G., Bastawde, K. B., Varma, A. J., & Gokhale, D. V. (2007). Bioresource Technology, 98, 1467–1473.

    Article  CAS  Google Scholar 

  3. Soni, R., Nazir, A., Chadha, B. S., & Saini, H. S. (2008). Bioresource, 3, 234–246.

    Google Scholar 

  4. Sheehan, J., & Himmel, M. E. (1999). Biotechnology Progress, 15, 817–827.

    Article  CAS  Google Scholar 

  5. Rashid, M. H., Javed, M. R., Kawaguchi, T., Sumitani, J., & Arai, M. (2008). Biotechnology Letters, 30, 2165–2172.

    Article  CAS  Google Scholar 

  6. Solis, S., Loeza, J., Segura, G., Tello, J., Reyes, N., Lappe, P., Guiterrez, L., Rios, F., & Huitron, C. (2009). Enzyme and Microbial Technology, 44, 123–128.

    Article  CAS  Google Scholar 

  7. Chandra, M., Kalra, A., Sangwan, N. S., Gaurav, S. S., Darokar, M. P., & Sangwan, R. S. (2009). Bioresource Technology, 100, 1659–1662.

    Article  CAS  Google Scholar 

  8. Mohamed, H. A. A., & Haggag, W. M. (2010). Journal of Scientific and Industrial Research, 1, 504–515.

    Article  Google Scholar 

  9. Prabavathy, V. R., Mathivanan, N., Sagadevan, E., Murugesan, K., & Lalithakumari, D. (2006). Enzyme and Microbial Technology, 38, 719–723.

    Article  CAS  Google Scholar 

  10. Dillon, A. J. P., Camassola, M., Henriques, J. A. P., Fungaro, M. H. P., Azevedo, A. C. S., Velho, T. A. F., & Laguna, S. E. (2008). Enzyme and Microbial Technology, 43, 403–409.

    Article  CAS  Google Scholar 

  11. Savitha, S., Sadhasivam, S., & Swaminathan, K. (2010). Biotechnology Advances, 28, 285–292.

    Article  CAS  Google Scholar 

  12. Zhang, Y.-X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P. C., & Cardayre, S. B. (2002). Nature, 415, 644–646.

    Article  CAS  Google Scholar 

  13. Cheng, Y., Song, X., Qin, Y., & Qu, Y. (2009). Journal of Applied Microbiology, 107, 1837–1846.

    Article  CAS  Google Scholar 

  14. Miller, G. L. (1959). Analytical Chemistry, 31, 420–428.

    Google Scholar 

  15. Wood, T. M., & Bhat, K. M. (1988). Methods in Enzymology, 160, 87–112.

    Article  CAS  Google Scholar 

  16. Parry, N. J., Beever, D. E., Owen, E., Vandenbergbe, I., Beeumen, J. V., & Bhat, M. K. (2001). Journal of Biochemistry, 353, 117–127.

    CAS  Google Scholar 

  17. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  18. Varavallo, M. A., Queiroz, M. V., Lana, T. G., Brito, A. T. R., Goncalves, D. B., & Araujo, E. F. (2007). Brazilian Journal of Microbiology, 238, 52–57.

    Article  Google Scholar 

  19. Rubinder, K., Chadha, B. S., Singh, S., & Saini, H. S. (2000). Canadian Journal of Microbiology, 46, 669–673.

    CAS  Google Scholar 

  20. Manczinger, L., & Ferenczy, L. (1985). Applied Microbiology and Biotechnology, 122, 72–76.

    Google Scholar 

  21. Sonia, K. G., Chadha, B. S., & Saini, H. S. (2005). Bioresources and Biotechnology, 96, 1561–1569.

    Article  CAS  Google Scholar 

  22. Szakacs G, Tengerdy RP (1996) Enzyme for pulp and paper processing. In ACS Symp Ser 655, pp. 175–182

  23. Sanchez-Herrera, L., Ramos-Valdivia, A. C., de la Torre, M., Salgado, L. M., & Ponce-Noyola, T. (2007). Applied Microbiology and Biotechnology, 77, 589–595.

    Article  CAS  Google Scholar 

  24. Gimbert, I. H., Margeot, A., Dolla, A., Jan, G., Molle, D., Lignon, S., Mathis, H., Sigoillot, J. C., Monot, F., & Asther, M. (2008). Biotechnology for Biofuels, 1, 18. doi:10.1186/1754-6834-1-18.

    Article  Google Scholar 

  25. Nagendran, S., Hallen-Adams, H. E., Paper, J. M., Aslam, N., & Walton, J. D. (2009). Fungal Genetics and Biology, 46, 427–435.

    Article  CAS  Google Scholar 

  26. Sharma, M., Soni, R., Nazir, A., Oberoi, H. S., & Chadha, B. S. (2010). Applied Biochemistry and Biotechnology, 163, 577–591.

    Article  Google Scholar 

  27. Wymelenberg, A. V., Gaskell, J., Mozuch, M., Sabat, G., Ralph, J., Skyba, O., Mansfield, S. D., Blanchette, R. A., Martinez, D., Grigoriev, I., Keraten, P. J., & Cullen, D. (2010). Applied and Environmental Microbiology, 76, 3599–3610.

    Article  Google Scholar 

  28. Shukla, H. D. (2006). Proteome Science, 4, 6. doi:10.1186/1477-5956-4-6.

    Article  Google Scholar 

  29. Korotkova, M., Ossipova, E., Idborg, H., Ghorghe, K., Leclerc, P., & Jakobsson, P.-J. (2011). Annals of the Rheumatic Diseases, 70, A23–A24. doi:10.1136/ard.2010.148965.25.

    Article  Google Scholar 

  30. Kim, K.-H., Brown, K. M., Harris, P. V., Langston, J. A., & Cherry, J. R. (2007). Journal of Proteome Research, 6, 4749–4757.

    Article  CAS  Google Scholar 

  31. Nascimento, C. V., Souza, F. H. M., Masui, D. C., Leone, F. A., Peralta, R. M., Jorge, J. A., & Furriel, R. P. M. (2010). Journal of Microbiology, 48, 53–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support from NAIP (ICAR) for carrying out this research project (NAIP/Comp-4/C-30030) “Novel biotechnological processes for production of high-value products from rice straw and bagasse” is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Chadha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, B., Sharma, M., Soni, R. et al. Proteome-Based Profiling of Hypercellulase-Producing Strains Developed Through Interspecific Protoplast Fusion Between Aspergillus nidulans and Aspergillus tubingensis . Appl Biochem Biotechnol 169, 393–407 (2013). https://doi.org/10.1007/s12010-012-9985-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9985-0

Keywords

Navigation