Skip to main content

Advertisement

Log in

The Metabolic Advantage of Choline Lactate in Growth Media: An Experimental Analysis with Staphylococcus lentus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 28 March 2013

Abstract

The metabolic effectiveness of choline lactate in the growth media was investigated relative to conventional carbon source for growing Staphylococcus lentus, a bacterial strain commonly used in bioremediation of industrial effluents and xenobiotic detoxification. Bacterial growth thermodynamics was determined by biocalorimetry. 13C NMR and FTIR spectroscopic analyses traced the consumption of choline lactate at specific time intervals of bacterial growth. Under aerobic conditions, it is apparent that S. lentus initially metabolized lactate for its energy needs, while the choline cation of the ionic salt seemed to provide its C and N for biosynthetic intermediates for cell structure/function, in the growing bacterial colony. Urea accumulation after 40 h of bacterial growth was recorded. Possible metabolic trajectory of choline lactate consumed during S. lentus growth is suggested here. The theoretical estimation of heats of reaction for the proposed metabolic pathway (455 kJ/mol) was comparable with the experimentally obtained reaction enthalpy (435 kJ/mol), which further validated the proposed metabolic pathway. The biomass and energy profile of bacteria growth in choline media was found to be more favorable than in glucose media. The ionic liquid, choline lactate, offers a metabolically and energetically efficient carbon (and nitrogen) source for growing S. lentus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Gangu, S. A., Weatherley, L. R., & Scurto, A. M. (2009). Whole-cell biocatalysis with ionic liquids. Current Organic Chemistry, 13, 1242–1258.

    Article  CAS  Google Scholar 

  2. Vijayaraghavan, R., Izgorodin, A., Ganesh, V., Surianarayanan, M., & MacFarlane, D. R. (2010). Long term structural and chemical stability of DNA in hydrated ionic liquids. Angewandte Chemie International Edition, 49, 1631–1633.

    Article  CAS  Google Scholar 

  3. Meck, W. H., & Williams, C. L. (2003). Metabolic imprinting of choline by its availability during gestation: implications for memory and attentional processing across the lifespan. Neuroscience and Biobehavioral Reviews, 27, 385–399.

    Article  CAS  Google Scholar 

  4. Gladden, L. B. (2004). Lactate metabolism: a new paradigm for the third millennium. The Journal of Physiology, 558, 5–30.

    Article  CAS  Google Scholar 

  5. Famili, I., Forster, J., Nielsen, J., & Palsson, O. (2003). Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome e-scale reconstructed metabolic network. Proceedings of the National Academy of Sciences of the United States of America, 100, 13134–13139.

    Article  CAS  Google Scholar 

  6. Cintolesi, A., Clomburg, J. M., Rigou, V., Zygourakis, K., & Gonzalez, R. (2012). Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli. Biotechnology and Bioengineering, 109, 187–198.

    Article  CAS  Google Scholar 

  7. Fischer, E., & Sauer, U. (2003). Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. European Journal of Biochemistry, 270, 880–891.

    Article  CAS  Google Scholar 

  8. Fuhrer, T., Fischer, E., & Sauer, U. (2005). Experimental identification and quantification of glucose metabolism in seven bacterial species. Journal of Bacteriology, 187, 1581–1590.

    Article  CAS  Google Scholar 

  9. Welch, G. R. (1993). Bioenergetics and the cellular microenvironment. Pure and Applied Chemistry, 65, 1907–1914.

    Article  CAS  Google Scholar 

  10. Sekar, S., Mahadevan, S., Vijayaraghavan, R., & Mandal, A. B. (2012). Bioenergetics for the growth of Staphylococcus lentus in biocompatible choline salts. Applied Microbiology and Biotechnology. doi:10.1007/s00253-012-4009-0.

  11. Sekar, S., Mahadevan, S., Dhilip Kumar, S. S., & Mandal, A. B. (2011). Thermo kinetic responses of the metabolic activity of S. lentus cultivated in a glucose limited mineral salt medium. Journal of Thermal Analysis and Calorimetry, 140, 149–155.

    Article  Google Scholar 

  12. Data from NIST Standard Reference Database 69: NIST Chemistry WebBook.

  13. Shanley, E. S., & Melhem, G. A. (1995). A review of ASTM CHETAH 7.0 hazard evaluation criteria. Journal of Loss Prevention in the Process Industries, 8, 261–264.

    Article  Google Scholar 

  14. Deive, F. J., Rodriguez, A., Varela, A., Rodrigues, C., Leitao, M. C., Houbraken, J. A. M. P., Pereiro, A. B., Longo, M. A., Sanroman, M. A., Samson, R. A., Rebelo, L. P. N., & Pereira, C. S. (2011). Impact of ionic liquids on extreme microbial biotypes from soil. Green Chemistry, 13, 687.

    Article  CAS  Google Scholar 

  15. Boethling, R. S., Sommer, E., & DiFiore, D. (2007). Designing small molecules for biodegradability. Chemistry Review, 107, 2207–2227.

    Article  CAS  Google Scholar 

  16. Schisler, D. A., Khan, N. I., Boehm, M. J., Lipps, P. E., Slininger, P. J., & Zhang, S. (2006). Selection and evaluation of the potential of choline-metabolizing microbial strains to reduce Fusarium head blight. Biological Control, 39, 497–506.

    Article  Google Scholar 

  17. Smith, L. T., Pocard, J. A., Bernard, T., & Le Rudulier, D. (1988). Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. Journal of Bacteriology, 170(7), 3142–3149.

    CAS  Google Scholar 

  18. Lisa, A. T., Beassoni, P. R., Massimelli, M. J., Otero, L. H., & Doménech, C. E. (2007). A glance on Pseudomonas aeruginosa phosphorylcholine phosphatase, an enzyme whose synthesis depends on the presence of choline in its environment, vol.1. In A. Mendez-Vilas (Ed.), Communicating current research and educational topic and trends in applied microbiology (pp. 255–262). Badajoz: Formex.

    Google Scholar 

  19. Stockar, U. (2010). Biothermodynamics of live cells: a tool for biotechnology and biochemical engineering. Journal of Non-Equilibrium Thermodynamics, 35, 415–475.

    Google Scholar 

  20. Horne, D., & Tomasz, A. (1993). Possible role of a choline-containing teichoic acid in the maintenance of normal cell shape and physiology in Streptococcus oralis. Journal of Bacteriology, 175, 1717–1722.

    CAS  Google Scholar 

  21. Tomasz, A., Zanati, E., & Ziegler, R. (1971). DNA uptake during genetic transformation and the growing zone of the cell envelope. Proceedings of the National Academy of Sciences of the United States of America, 68, 1848–1852.

    Article  CAS  Google Scholar 

  22. De Rudder, K. E. E., Sohlenkamp, C., & Geiger, O. (1999). Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. Journal of Biological Chemistry, 274, 20011–20016.

    Article  Google Scholar 

  23. Landfald, B., & Strom, A. R. (1986). Choline–glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. Journal of Bacteriology, 165, 849–855.

    CAS  Google Scholar 

Download references

Acknowledgments

Sudharshan Sekar is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for the Senior Research Fellowship. The authors are grateful to Prof. N.R. Rajagopal for his suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Surianarayanan Mahadevan or Asit Baran Mandal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 335 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekar, S., Mahadevan, S., Deepa, P.R. et al. The Metabolic Advantage of Choline Lactate in Growth Media: An Experimental Analysis with Staphylococcus lentus . Appl Biochem Biotechnol 169, 380–392 (2013). https://doi.org/10.1007/s12010-012-9981-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9981-4

Keywords

Navigation