Skip to main content
Log in

Computing and Interpreting Specific Production Rates in a Chemostat in Steady State According to the Luedeking-Piret model

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The Luedeking–Piret model is an empirical relationship which is very widely used in cell cultures to evaluate specific production rates of some products (metabolites or others). It constitutes a very common method of calculation as much in fundamental as in applied research and especially for designing and optimizing industrial processes in very varied fields. However, this model appears to be frequently deficient and has to be greatly adapted, practically, one might say, for each individual case. Obviously, this is a very great drawback, requiring a great deal of time spent on it and one that greatly lessens the ‘universality’ of the model. This work reveals that it is possible to give the initial Luedeking–Piret model a much more general scope. The used method revealed metabolic switches that have never been suspected until now. Confirmation of the method would certainly give a precious general tool both to optimize production processes and to increase understanding of some physiological states of cells in chemostat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Luedeking, R., & Piret, E. L. (1959). Journal of Biochemical and Microbiological Technology and Engineering, 1, 431–459.

    Article  CAS  Google Scholar 

  2. Baei, S. M., Mahmoudi, M., & Yunesi, H. (2008). African Journal of Biotechnology, 7, 3487–3489.

    CAS  Google Scholar 

  3. Taylor, M. A. (1999). Faculty of Graduate studies. London: University of western Ontario.

    Google Scholar 

  4. Znad, H., Blazej, M., Bales, V., & Markos, J. (2004). Chemical Papers, 58, 23–28.

    CAS  Google Scholar 

  5. Nandan, F., Gaurav, A., Pandey, A., & Nampoothiri, K. M. (2010). Brazilian Archives of Biology and Technology, 53, 1443–1450.

    Article  CAS  Google Scholar 

  6. Granstrøm T. (2002). Dissertation. Espoo, Finland: Helsinki University of Technology.

  7. Curless, C. E., Forrer, P. D., Mann, M. B., Fenton, D. M., & Tsai, L. B. (1988). Biotechnology and Bioengineering, 34, 415–421.

  8. Richalet, J., Rault, A., Pouliquen, R. (1971). Identification des processus par la méthode des modèles: Gordon & Breach, Paris p. 14.

  9. Daran-Lapujade, P., Daram, J. M., van Maris, A. J. A., de Winde, J. H., & Pronk, J. T. (2009). Advances in Microbial Physiology, 54, 257–311.

    Google Scholar 

  10. Bull, A. T. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 993–1021. doi:10.1007/s10295-010-0816-4.

    Article  CAS  Google Scholar 

  11. Thierie, J. (2005). Dissertation. Université Libre de Bruxelles.

  12. Ling, L. S., Rosfarizan, M., Raha, A. R., Wan, H. Y., & Ariff, A. (2006). The Journal of Microbiology, 44, 439–446.

    CAS  Google Scholar 

  13. Jørgensen, M. H., & Nikolajsen, K. (1987). Applied Microbiology and Biotechnology, 25, 313–316.

    Article  Google Scholar 

  14. Boonmee, M., Leksawasdi, N., Brudge, W., & Rogers, P. L. (2003). Biochemical Engineering Journal, 14, 127–135.

    Article  CAS  Google Scholar 

  15. Ohara, H., Hiyama, K., & Yoshida, T. (1992). Applied Microbiology and Biotechnology, 37, 544–548.

    Article  CAS  Google Scholar 

  16. Djidel A. (2007). Dissertation. Nancy University INPL.

  17. Ejiofor, A. O., Chisti, Y., & Moo-Young. (1998). Journal of Industrial Microbiology, 16, 102–109.

    Article  Google Scholar 

  18. Walker, G. (1998). West Sussex: Wiley.

  19. Monteagudo, J. M., Rodriguez, L., Rincon, J., & Fuertes, J. (1997). Journal of Chemical Technology and Biotechnology, 68, 271–276.

    Article  CAS  Google Scholar 

  20. Balannec, B., Bouguettoucha, A., & Abdeltif, A. (2007). Biochemical Engineering Journal, 35, 289–294.

    Article  CAS  Google Scholar 

  21. Dutta, S. K., Mukherjee, A., & Chakraborty, P. (1996). Applied Microbiology and Biotechnology, 46, 410–413. doi:10.1007/BF00166238.

    Article  Google Scholar 

  22. Bouguettoucha A., Balanne B., & Amrane A. (2009). In: Models for Lactic Acid Fermentation. Food Technology and Biotechnology 49, 3–12 (2011) 3 ISSN 1330–9862 review.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Thierie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thierie, J. Computing and Interpreting Specific Production Rates in a Chemostat in Steady State According to the Luedeking-Piret model. Appl Biochem Biotechnol 169, 477–492 (2013). https://doi.org/10.1007/s12010-012-9978-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9978-z

Keywords

Navigation