Skip to main content
Log in

Cu/Zn Incorporation During Purification of Soluble Human EC-SOD from E. coli Stabilizes Proper Disulfide Bond Formation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Extracellular superoxide dismutase (EC-SOD) is the only enzyme that removes superoxide radical in the extracellular space. The reduction of EC-SOD is linked to many diseases, suggesting that the protein may have therapeutic value. EC-SOD is reported to be insoluble and to make inclusion bodies when overexpressed in the cytoplasm of Escherichia coli. The refolding process has the advantage of high yield, but has the disadvantage of frequent aggregation or misfolding during purification. For the first time, this study shows that fusion with maltose-binding protein (MBP), N-utilization substance protein A, and protein disulfide isomerase enabled the soluble overexpression of EC-SOD in the cytoplasm of E. coli. MBP-tagged human EC-SOD (hEC-SOD) was purified by MBP affinity and anion exchange chromatography, and its identity was confirmed by MALDI-TOF MS analysis. The purified protein showed good enzyme activity in vitro; however, there was a difference in metal binding. When copper and zinc were incorporated into hEC-SOD before MBP tag cleavage, the enzymatic activity was higher than when the metal ions were bound to the purified protein after MBP tag cleavage. Therefore, the enzymatic activity of hEC-SOD is associated with metal incorporation and protein folding via disulfide bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fang, Y. Z., Yang, S., & Wu, G. (2002). Nutrition, 18, 872–879.

    Article  CAS  Google Scholar 

  2. Faraci, F. M., & Didion, S. P. (2004). Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1367–1373.

    Article  CAS  Google Scholar 

  3. Landmesser, U., Merten, R., Spiekermann, S., Buttner, K., Drexler, H., & Hornig, B. (2000). Circulation, 101, 2264–2270.

    Article  CAS  Google Scholar 

  4. Landmesser, U., & Drexler, H. (2002). Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 1367–1368.

    Article  CAS  Google Scholar 

  5. Zelko, I. N., Mariani, T. J., & Folz, R. J. (2002). Free Radic. Biology and Medicine, 33, 337–349.

    CAS  Google Scholar 

  6. Marklund, S. L. (1982). Proceedings of the National Academy of Sciences of the United States of America, 79, 7634–7638.

    Article  CAS  Google Scholar 

  7. Petersen, S. V., Oury, T. D., Valnickova, Z., Thogersen, I. B., Hojrup, P., Crapo, J. D., & Enghild, J. J. (2003). Proceedings of the National Academy of Sciences of the United States of America, 100, 13875–13880.

    Article  CAS  Google Scholar 

  8. Demchenko, I. T., Oury, T. D., Crapo, J. D., & Piantadosi, C. A. (2002). Circulation Research, 91, 1031–1037.

    Article  CAS  Google Scholar 

  9. Suliman, H. B., Ali, M., & Piantadosi, C. A. (2004). Blood, 104, 43–50.

    Article  CAS  Google Scholar 

  10. Levin, E. D. (2005). Current Alzheimer Research, 2, 191–196.

    Article  CAS  Google Scholar 

  11. Tibell, L., Hjalmarsson, K., Edlund, T., Skogman, G., Engstrom, A., & Marklund, S. L. (1987). Proceedings of the National Academy of Sciences of the United States of America, 84, 6634–6638.

    Article  CAS  Google Scholar 

  12. He, H. J., Yuan, Q. S., Yang, G. Z., & Wu, X. F. (2002). Protein Expression and Purification, 24, 13–17.

    Article  CAS  Google Scholar 

  13. Chen, H. L., Yen, C. C., Tsai, T. C., Yu, C. H., Liou, Y. J., Lai, Y. W., Wang, M. L., & Chen, C. M. (2006). Journal of Agricultural and Food Chemistry, 54, 8041–8047.

    Article  CAS  Google Scholar 

  14. Ryu, K., Kim, Y. H., Kim, Y., Lee, J. S., Jeon, B., & Kim, T. Y. (2008). Journal of Microbiology and Biotechnology, 18, 1648–1654.

    CAS  Google Scholar 

  15. Son, Y. J., Bae, J. Y., Chong, S. H., Lee, H. S., Mo, S. H., Kim, T. Y., & Choe, H. (2010). Applied Biochemistry and Biotechnology, 162, 1585–1598.

    Article  CAS  Google Scholar 

  16. Zhu, X. Q., Li, S. X., He, H. J., & Yuan, Q. S. (2005). Acta Biochim Biophys Sin (Shanghai), 37, 265–269.

    Article  CAS  Google Scholar 

  17. Parr, R. D., & Ball, J. M. (2003). Plasmid, 49, 179–183.

    Article  CAS  Google Scholar 

  18. Busso, D., Delagoutte-Busso, B., & Moras, D. (2005). Analytical Biochemistry, 343, 313–321.

    Article  CAS  Google Scholar 

  19. Tan, A. S., & Berridge, M. V. (2000). Journal of Immunological Methods, 238, 59–68.

    Article  CAS  Google Scholar 

  20. Enghild, J. J., Thogersen, I. B., Oury, T. D., Valnickova, Z., Hojrup, P., & Crapo, J. D. (1999). Journal of Biological Chemistry, 274, 14818–14822.

    Article  CAS  Google Scholar 

  21. Olsen, D. A., Petersen, S. V., Oury, T. D., Valnickova, Z., Thogersen, I. B., Kristensen, T., Bowler, R. P., Crapo, J. D., & Enghild, J. J. (2004). Journal of Biological Chemistry, 279, 22152–22157.

    Article  CAS  Google Scholar 

  22. Petersen, S. V., & Enghild, J. J. (2005). Biomedicine and Pharmacotherapy, 59, 175–182.

    Article  CAS  Google Scholar 

  23. Stenlund, P., Lindberg, M. J., & Tibell, L. A. (2002). Biochemistry (Mosc), 41, 3168–3175.

    Article  CAS  Google Scholar 

  24. Boissinot, M., Karnas, S., Lepock, J. R., Cabelli, D. E., Tainer, J. A., Getzoff, E. D., & Hallewell, R. A. (1997). EMBO Journal, 16, 2171–2178.

    Article  CAS  Google Scholar 

  25. Strange, R. W., Antonyuk, S. V., Hough, M. A., Doucette, P. A., Valentine, J. S., & Hasnain, S. S. (2006). Journal of Molecular Biology, 356, 1152–1162.

    Article  CAS  Google Scholar 

  26. Yamazaki, Y., & Takao, T. (2008). Analytical Chemistry, 80, 8246–8252.

    Article  CAS  Google Scholar 

  27. Hoffmann, F., & Rinas, U. (2004). Advances in Biochemical Engineering/Biotechnology, 89, 73–92.

    Article  CAS  Google Scholar 

  28. Kapust, R. B., & Waugh, D. S. (1999). Protein Science, 8, 1668–1674.

    Article  CAS  Google Scholar 

  29. Bach, H., Mazor, Y., Shaky, S., Shoham-Lev, A., Berdichevsky, Y., Gutnick, D. L., & Benhar, I. (2001). Journal of Molecular Biology, 312, 79–93.

    Article  CAS  Google Scholar 

  30. Shaki-Loewenstein, S., Zfania, R., Hyland, S., Wels, W. S., & Benhar, I. (2005). Journal of Immunological Methods, 303, 19–39.

    Article  CAS  Google Scholar 

  31. Getzoff, E. D., Tainer, J. A., Stempien, M. M., Bell, G. I., & Hallewell, R. A. (1989). Proteins, 5, 322–336.

    Article  CAS  Google Scholar 

  32. Antonyuk, S. V., Strange, R. W., Marklund, S. L., & Hasnain, S. S. (2009). Journal of Molecular Biology, 388, 310–326.

    Article  CAS  Google Scholar 

  33. Rakhit, R., Crow, J. P., Lepock, J. R., Kondejewski, L. H., Cashman, N. R., Chakrabartty, A. (2004). J Biol Chem, 279(15), 15499–15504.

    Google Scholar 

  34. Qin, Z., Itoh, S., Jeney, V., Ushio-Fukai, M., & Fukai, T. (2006). The FASEB Journal, 20, 334–336.

    Article  CAS  Google Scholar 

  35. Ma, J. K., Lee, S., Choi, M., Bishop, G. R., Hosler, J. P., & Davidson, V. L. (2008). Journal of Inorganic Biochemistry, 102, 342–346.

    Article  CAS  Google Scholar 

  36. Lutsenko, S., Barnes, N. L., Bartee, M. Y., & Dmitriev, O. Y. (2007). Physiological Reviews, 87, 1011–1046.

    Article  CAS  Google Scholar 

  37. Due, A.V., Petersen, S. V., Valnickova, Z., Ostergaard, L., Oury, T. D., Crapo, J. D. (2006). Extracellular superoxide dismutase exists as an octamer. FEBS Lett, 580(5), 1485–1489.

    Google Scholar 

  38. Oury, T. D., Crapo, J. D., Valnickova, Z., Enghild, J. J. (1996). Human extracellular superoxide dismutase is a tetramer composed of two disulphide-linked dimers: a simplified, high-yield purification of extracellular superoxide dismutase. Biochem J, 317(Pt1), 51–57.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Research Foundation (2011-0003215 and 2009-0077495) funded by the Ministry of Education, Science and Technology, the Republic of Korea and by the Asan Institute for Life Sciences (2009-307), Seoul, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Choe.

Additional information

Ji-Young Bae and Bon-Kyung Koo contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, JY., Koo, BK., Ryu, HB. et al. Cu/Zn Incorporation During Purification of Soluble Human EC-SOD from E. coli Stabilizes Proper Disulfide Bond Formation. Appl Biochem Biotechnol 169, 1633–1647 (2013). https://doi.org/10.1007/s12010-012-0025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-0025-x

Keywords

Navigation